Skip to main content
Log in

A Composite Polyelectrolytic Matrix for Controlled Oral Drug Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to formulate drug-loaded polyelectrolyte matrices constituting blends of pectin, chitosan (CHT) and hydrolyzed polyacrylamide (HPAAm) for controlling the premature solvation of the polymers and modulating drug release. The model drug employed was the highly water-soluble antihistamine, diphenhydramine HCl (DPH). Polyelectrolyte complex formation was validated by infrared spectroscopy. Matrices were characterized by textural profiling, porositometry and SEM. Drug release studies were performed under simulated gastrointestinal conditions using USP apparatus 3. FTIR spectra revealed distinctive peaks indicating the presence of –COO symmetrical stretching (1,425–1,390 cm−1) and -NH +3 deformation (1,535 cm−1) with evidence of electrostatic interaction between the cationic CHT and anionic HPAAm corroborated by molecular mechanics simulations of the complexes. Pectin–HPAAm matrices showed electrostatic attraction due to residual –NH2 and –COO groups of HPAAm and pectin, respectively. Textural profiling demonstrated that CHT-HPAAm matrices were most resilient at 6.1% and pectin–CHT–HPAAm matrices were the least (3.9%). Matrix hardness and deformation energy followed similar behavior. Pectin–CHT–HPAAm and CHT–HPAAm matrices produced type IV isotherms with H3 hysteresis and mesopores (22.46 nm) while pectin–HPAAm matrices were atypical with hysteresis at a low P/P0 and pore sizes of 5.15 nm and a large surface area. At t 2 h, no DPH was released from CHT–HPAAm matrices, whereas 28.2% and 82.2% was released from pectin–HPAAm and pectin–CHT–HPAAm matrices, respectively. At t 4 h, complete DPH release was achieved from pectin–CHT–HPAAm matrices in contrast to only 35% from CHT–HPAAm matrices. This revealed the release-modulating capability of each matrix signifying their applicability in controlled oral drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006;31:576–602.

    Article  CAS  Google Scholar 

  2. Xiao C, Weng L, Lu Y, Zhang L. Blend films from chitosan and polyacrylamide solutions. J Macromol Sci Pure Appl Chem. 2001;A38:761–71.

    CAS  Google Scholar 

  3. Coombes AGA, Verderio E, Shaw B, Li X, Griffin M, Downes S. Biocomposites of non-crosslinked natural and synthetic polymers. Biomater. 2002;23:2113–8.

    Article  CAS  Google Scholar 

  4. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59:1413–33.

    Article  PubMed  CAS  Google Scholar 

  5. Li X, Liu KL, Wang M, Wong SY, Tjiu WC, He CB, et al. Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide). Acta Biomater. 2009;5:2002–12.

    Article  PubMed  CAS  Google Scholar 

  6. Pedram MY, Retuert J, Quijada R. Hydrogels based on modified chitosan, I: synthesis and swelling behavior of poly(acrylic acid) grafted chitosan. Macromol Chem Phys. 2000;201:923–30.

    Article  Google Scholar 

  7. Reis AV, Guilherme MR, Cavalcanti OA, Rubira AF, Muniz EC. Synthesis and characterization of pH-responsive hydrogels based on chemically modified Arabic gum polysaccharide. Polym. 2006;47:2023–9.

    Article  CAS  Google Scholar 

  8. Derkaoui SM, Avramoglou T, Barbaud C, Letourneur D. Synthesis and characterization of a new polysaccharide-graft-polymethacrylate copolymer for three-dimensional hybrid hydrogels. Biomacromolecules. 2008;9:3033–8.

    Article  PubMed  CAS  Google Scholar 

  9. Lee KY, Park WH, Ha WS. Polyelectrolyte complexes of sodium alginate with chitosan or its derivatives for microcapsules. J Appl Polym Sci. 1997;63:425–32.

    Article  CAS  Google Scholar 

  10. Simsek-Ege FA, Bond GM, Stringer J. Polyelectrolyte complex formation between alginate and chitosan as a function of pH. J Appl Polym Sci. 2003;88:346–51.

    Article  CAS  Google Scholar 

  11. Lammertz S, Grünfelder T, Ninni L, Maurer G. A model for the Gibbs energy of aqueous solutions of polyelectrolytes. Fluid Phase Equilib. 2009;280:132–43.

    Article  CAS  Google Scholar 

  12. Lee SB, Lee YM, Song KW, Park MH. Preparation and properties of polyelectrolyte complex sponges composed of hyaluronic acid and chitosan and their biological behaviors. J Appl Polym Sci. 2003;90:925–32.

    Article  CAS  Google Scholar 

  13. Chellat F, Tabrizian M, Dumitriu S, Chornet E, Magny P, Rivard CH, et al. In vitro and in vivo biocompatibility of chitosan–xanthan polyionic complexes. J Biomed Mater Res. 2000;51:107–16.

    Article  PubMed  CAS  Google Scholar 

  14. Peniche C, Argüelles-Monal W. Chitosan based polyelectrolyte complexes. Macromol Symp. 2001;168:103–16.

    Article  CAS  Google Scholar 

  15. Shchipunov YA, Postnova IV. Water-soluble polyelectrolyte complexes of oppositely charged polysaccharides. Compos Interfaces. 2009;16:251–79.

    Article  CAS  Google Scholar 

  16. Macleod GS, Collett JH, Fell JT. The potential use of mixed films of pectin, chitosan and HPMC for bimodal drug release. J Control Release. 1999;58:303–10.

    Article  PubMed  CAS  Google Scholar 

  17. Nichifor M, Lopes S, Bastos M, Lopes A. Self-aggregation of amphiphilic cationic polyelectrolytes based on polysaccharides. J Phys Chem B. 2004;108:16463–72.

    Article  CAS  Google Scholar 

  18. Nagahata M, Nakaoka R, Teramoto A, Abe K, Tsuchiya T. The response of normal human osteoblasts to anionic polysaccharide polyelectrolyte complexes. Biomater. 2005;26:5138–44.

    Article  CAS  Google Scholar 

  19. Sarmento B, Ribeiro A, Veiga F, Ferreira D. Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids Surf B. 2006;53:193–202.

    Article  CAS  Google Scholar 

  20. Argin-Soysal S, Kofinas P, Lo YM. Effect of complexation conditions on xanthan–chitosan polyelectrolyte complex gels. Food Hydrocolloids. 2009;23:202–9.

    Article  CAS  Google Scholar 

  21. Lipp D, Kozakiewicz J, In: Kroschwitz JI, Howe-Grant M, Bickford M, Gray L, Editors. Kirk-othmer encyclopedia of chemical technology, 4th edn. New York: Wiley; 1991 (1). p. 266.

  22. Sharma A, Desai A, Ali R, Tomalia D. Polyacrylamide gel electrophoresis separation and detection of polyamidoamine dendrimers possessing various cores and terminal groups. J Chromatogr A. 2005;1081:238–44.

    Article  PubMed  CAS  Google Scholar 

  23. Entry JA, Sojka RE, Hicks BJ. Carbon and nitrogen stable isotope ratios can estimate anionic polyacrylamide degradation in soil. Geoderma. 2008;145:8–16.

    Article  CAS  Google Scholar 

  24. Yan LJ, Forster MJ. Resolving mitochondrial protein complexes using nongradient blue native polyacrylamide gel electrophoresis. Anal Chem. 2009;389:143–9.

    CAS  Google Scholar 

  25. Volk H, Friedrich RE. In: Davidson RL, editor. Handbook of water-soluble guns and resins. New York: McGraw-Hill; 1980. p. 16.

    Google Scholar 

  26. Zeynali ME, Rabbii A. Alkaline hydrolysis of polyacrylamide and study on poly(acrylamide-co-sodium acrylate) properties. Iran Polym J. 2002;11:269–75.

    CAS  Google Scholar 

  27. Kurenkov VF, Hartan HG, Lobanov FI. Alkaline hydrolysis of polyacrylamide. Russ J Appl Chem. 2001;74:543–54.

    Article  CAS  Google Scholar 

  28. Sokker HH, Abdel Ghaffar AM, Gad YH, Aly AS. Synthesis and characterization of hydrogels based on grafted chitosan for the controlled drug release. Carbohydr Polym. 2009;75:222–9.

    Article  CAS  Google Scholar 

  29. Krayukhina MA, Samoilova NA, Yamskov IA. Polyelectrolyte complexes of chitosan: formation, properties and applications. Russ Chem Rev. 2008;77:799–813.

    Article  CAS  Google Scholar 

  30. Wakerly Z, Fell JT, Attwood D, Parkins DA. In vitro evaluation of pectin-based colonic drug delivery systems. Int J Pharm. 1996;129:73–7.

    Article  CAS  Google Scholar 

  31. Macleod GS, Fell JT, Collett JH, Sharma HL, Smith AM. Selective drug delivery to the colon using pectin:chitosan:hydroxypropyl methylcellulose film-coated tablets. Int J Pharm. 1999;187:251–7.

    Article  PubMed  CAS  Google Scholar 

  32. Ahrabi SF, Madsen G, Dyrstad K, Sande SA, Graffner C. Development of pectin matrix tablets for colonic delivery of model drug ropivacaine. Eur J Pharm Sci. 2000;10:43–52.

    Article  PubMed  CAS  Google Scholar 

  33. Liu L, Fishman ML, Kost J, Hicks KB. Pectin-based systems for colon-specific drug delivery via oral route. Biomater. 2003;24:3333–43.

    Article  CAS  Google Scholar 

  34. Maestrelli F, Cirri M, Corti G, Mennini N, Mura P. Development of enteric-coated calcium pectinate microspheres intended for colonic drug delivery. Eur J Pharm Biopharm. 2008;69:508–18.

    Article  PubMed  CAS  Google Scholar 

  35. Bernabé P, Peniche C, Argüelles-Monal W. Swelling behavior of chitosan/pectin polyelectrolyte complex membranes, effect of thermal cross-linking. Polym Bulletin. 2005;55:367–75.

    Article  Google Scholar 

  36. Barret EP, Joyner LG, Halenda PH. Determination of pore volume and area distribution in porous substances. I. Computation from nitrogen isotherms. J Am Chem Soc. 1951;73:373–80.

    Article  Google Scholar 

  37. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603–19.

    Article  CAS  Google Scholar 

  38. Chambin O, Dupuis G, Champion D, Voilley A, Pourcelot Y. Colon-specific drug delivery: influence of solution reticulation properties upon pectin beads performance. Int J Pharm. 2006;321:86–93.

    Article  PubMed  CAS  Google Scholar 

  39. Yang L, Chu JS, Fix JA. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm. 2002;235:1–15.

    Article  PubMed  CAS  Google Scholar 

  40. Hébrard G, Hoffart V, Cardot J-M, Subirade M, Alric M, Beyssac E. Investigation of coated whey protein/alginate beads as sustained release dosage form in simulated gastrointestinal environment. Drug Dev Ind Pharm. 2009;35:1103–12.

    Article  PubMed  Google Scholar 

  41. Lee SS, Lim CB, Pai, CM, Lee SP, Seo MG, Park H. Composition and pharmaceutical dosage form for colonic drug delivery using polysaccharides US Patent: 6,413,494. 1999. http://www.pharmcast.com/Patents/Yr2002/July2002/070202/6413494_Colonic070202.htm. Accessed on: May 10, 2010.

  42. Veitser YI, Mints DM. Macromolecular flocculants in processes of natural water and wastewater treatment. Moscow: Stroiizdat; 1984.

    Google Scholar 

  43. Cao J, Tan Y, Che Y, Ma Q. Fabrication and properties of superabsorbent complex gel beads composed of hydrolyzed polyacrylamide and chitosan. J Applied Poly Sci. 2010;116(6):3338–45.

    CAS  Google Scholar 

  44. Liu L, Cooke PH, Coffin DR, Fishman ML, Hicks KB. Pectin and polyacrylamide composite hydrogels: effect of pectin on structural and dynamic mechanical properties. J Appl Polym Sci. 2003;92:1893–901.

    Article  Google Scholar 

  45. Rashidova SS, Milusheva RY, Semenova LN, Mukhamedjanova MY, Voropaeva NL, Vasilyeva S. Characteristics of interactions in the pectin–chitosan system. Chromatographia. 2004;59:779–82.

    CAS  Google Scholar 

  46. Tripathi S, Mehrotra GK, Dutta PK. Preparation and physicochemical evaluation of chitosan/poly(vinyl alcohol)/pectin ternary film for food-packaging applications. Carbohydr Polym. 2010;79:711–6.

    Article  CAS  Google Scholar 

  47. Pillay V, Fassihi R. In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract: II. Physicochemical characterization of calcium–alginate, calcium–pectinate and calcium–alginate–pectinate pellets. J Control Release. 1999;59:243–56.

    Article  PubMed  CAS  Google Scholar 

  48. Platé NA. Problems of polymer modification and the reactivity of functional groups of macromolecules. Pure Appl Chem. 1976;46:49–59.

    Article  Google Scholar 

  49. Groen JC, Peffer LAA, Ramırez JP. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003;60:1–17.

    Article  CAS  Google Scholar 

  50. Jelvehgari M, Siahi-Shadbad MR, Azarmi S, Martin GP, Nokhodchi A. The microsponge delivery system of benzoyl peroxide: Preparation, characterization and release studies. Int J Pharm. 2006;308:124–32.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the National Research Foundation of South Africa and the Technology Innovation Agency of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bawa, P., Pillay, V., Choonara, Y.E. et al. A Composite Polyelectrolytic Matrix for Controlled Oral Drug Delivery. AAPS PharmSciTech 12, 227–238 (2011). https://doi.org/10.1208/s12249-010-9576-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9576-8

KEY WORDS

Navigation