Skip to main content
Log in

Embryonic Chicken Trachea as a New In Vitro Model for the Investigation of Mucociliary Particle Clearance in the Airways

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Mucociliary clearance (MC) is an important defense mechanism of the respiratory system to eliminate inhaled and possibly noxious particles from the lung. Although the principal mechanics of MC seem to be relatively clear there are still open questions regarding the long-term clearance of particles. Therefore, we have developed a new set-up based on embryonic chicken trachea (ECT) to investigate mucociliary particle clearance in more detail. ECT was placed in an incubation chamber after carbon particles were applied and tracked using optical microscopy. The aim of the study was to validate this model by investigating the impact of temperature, humidity and drugs on particle transport rates. Particles were transported reproducibly along the trachea and clearance velocity (2.39 ± 0.25) mm/min was found to be in accordance to data reported in literature. Variation in temperature resulted in significantly reduced MC: (0.40 ± 0.12) mm/min (20 °C); (0.42 ± 0.10) mm/min (45 °C). Decreasing humidity (99–60%) had no significant effect on MC, whereas reduction to 20% humidity showed a significant influence on particle clearance. The use of different cilio- and muco-active drugs (Propranolol, Terbutalin, N-acetylcysteine) resulted in altered MC according to the pharmacological effect of the substances: a concentration dependent decrease of MC was found for Propranolol. From our results we conclude that this model can be employed to investigate MC of particles in more detail. Hence, the model may help to understand and identify decisive physico-chemical parameters for MC and to answer open questions regarding the long-term clearance phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Corkery. Inhalable drugs for systemic therapy. Resp. Care 45(7):831–835 (2000).

    CAS  Google Scholar 

  2. G. Oberdörster, E. Oberdörster, and J. Oberdörster. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Persp. 113(7):823–839 (2005).

    Article  CAS  Google Scholar 

  3. D. A. Groneberg, C. Witt, U. Wagner, K. F. Chung, and A. Fischer. Fundamentals of pulmonary drug delivery. Resp. Med. 97(4):382–387 (2003).

    Article  CAS  Google Scholar 

  4. P. Brand, C. Rieger, T. Beinert, and J. Heyder. Aerosol derived airway morphometry in healthy subjects. Eur. Resp. J. 8(10):1639–1646 (1995).

    Article  CAS  Google Scholar 

  5. G. Scheuch, J. Gebhart, G. Heigwer, and W. Stahlhofen. New device for human inhalation studies with small aerosol boluses. J. Aerosol Sci. 20(8):1293–1296 (1989).

    Article  Google Scholar 

  6. W. Möller, K. Häußinger, R. Winkler-Heil, et al. Mucociliary and long-term particle clearance in the airways of healthy nonsmoker subjects. J. Appl. Physiol. 97(6):2200–2206 (2004).

    Article  PubMed  Google Scholar 

  7. E. Marttin, N. G. M. Schipper, J. Coos Verhoef, and F. W. H. M. Merkus. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv. Drug Deliv. Rev. 29(1–2):13–38 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. M. Fuloria, and B. K. Rubin. Evaluating the efficacy of mucoactive aerosol therapy. Resp. Care 45(7):868–873 (2000).

    CAS  Google Scholar 

  9. H. Matsui, S. H. Randell, S. W. Peretti, C. W. Davis, and R. C. Boucher. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102(6):1125–1131 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. P. Verdugo. Goblet cells secretion and mucogenesis. Ann. Rev. Physiol. 52:157–176 (1990).

    Article  CAS  Google Scholar 

  11. M. I. Lethem. The role of tracheobronchial mucus in drug administration to the airways. Adv. Drug Deliv. Rev. 11(3):271–298 (1993).

    Article  CAS  Google Scholar 

  12. E. P. Lillehoj, and K. C. Kim. Airway mucus: its components and function. Arch. Pharm. Res. 25(6):770–780 (2002).

    PubMed  CAS  Google Scholar 

  13. T. Gray, J. S. Koo, and P. Nettesheim. Regulation of mucous differentiation and mucin gene expression in the tracheobronchial epithelium. Toxicol. 160(1–3):35–46 (2001).

    Article  CAS  Google Scholar 

  14. S. Kirkham, J. K. Sheehan, D. Knight, P. S. Richardson, and D. J. Thornton. Heterogeneity of airways mucus: variations in the amounts and glycoforms of the major oligomeric mucins MUC5AC and MUC5B. Biochem. J. 361(3):537–546 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. D. A. Groneberg, P. R. Eynott, S. Lim, et al. Expression of respiratory mucins in fatal status asthmaticus and mild asthma. Histopathology 40(4):367–373 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. D. A. Groneberg, P. R. Eynott, T. Oates, et al. Expression of MUC5AC and MUC5B mucins in normal and cystic fibrosis lung. Resp. Med. 96(2):81–86 (2002).

    Article  CAS  Google Scholar 

  17. J. R. Blake, and M. A. Sleigh. Mechanics of ciliary locomotion. Biol. Rev. Cambr. Phil. Soc. 49(1):85–125 (1974).

    Article  CAS  Google Scholar 

  18. P. Satir, and S. T. Christensen. Overview of structure and function of mammalian cilia. Ann. Rev. Physiol. 69:377–400 (2007).

    Article  CAS  Google Scholar 

  19. B. A. Afzelius. Ciliary structure in health and disease. Acta Oto-Rhino-Laryngol. Bel. 54(3):287–291 (2000).

    CAS  Google Scholar 

  20. M. A. Sleigh, J. R. Blake, and N. Liron. The propulsion of mucus by cilia. Am. Rev. Resp. Dis. 137(3):726–741 (1988).

    PubMed  CAS  Google Scholar 

  21. G. Scheuch, and W. Stahlhofen. Particle deposition of inhaled aerosol boluses in the upper human airways. J. Aerosol. Sci. 18(6):725–727 (1987).

    Article  CAS  Google Scholar 

  22. W. Stahlhofen, J. Gebhart, G. Rudolf, G. Scheuch, and K. Philipson. Clearance from the human airways of particles of different sizes deposited from inhaled aerosol boli. In Aerosols: Formation and Reactivity, Pergamon Press, Oxford, UK 1986.

  23. W. Stahlhofen, R. Koebrich, G. Rudolf, and G. Scheuch. Short-term and long-term clearance of particles from the upper human respiratory tract as function of particle size. J. Aerosol. Sci. 21(Supp 1):407–410 (1990).

    Article  Google Scholar 

  24. W. G. Kreyling, M. Semmler-Behnke, and W. Möller. Ultrafine particle–lung interactions: does size matter? J. Aerosol. Med. 19(1):74–83 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. F. Dominici, R. D. Peng, M. L. Bell, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. J. Am. Med. Assoc. 295(10):1127–1134 (2006).

    Article  CAS  Google Scholar 

  26. I. Annesi-Maesano, F. Forastiere, N. Kunzli, and B. Brunekref. Particulate matter, science and EU policy. Eur. Resp. J. 29(3):428–431 (2007).

    Article  CAS  Google Scholar 

  27. P. Gehr, M. Geiser, V. I. Hof, S. Schurch, U. Waber, and M. Baumann. Surfactant and inhaled particles in the conducting airways: structural, stereological, and biophysical aspects. Micros. Res. Techniq. 26(5):423–436 (1993).

    Article  CAS  Google Scholar 

  28. P. Gehr, F. H. Y. Green, M. Geiser, V. Im Hof, M. M. Lee, and S. Schürch. Airway surfactant, a primary defense barrier: mechanical and immunological aspects. J. Aerosol. Med. 9(2):163–181 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. M. Geiser, P. Gerber, I. Maye, V. Im Hof, and P. Gehr. Retention of Teflon particles in hamster lungs: a stereological study. J. Aerosol. Med. 13(1):43–55 (2000).

    PubMed  CAS  Google Scholar 

  30. S. Schurch, P. Gehr, V. Im Hof, M. Geiser, and F. Green. Surfactant displaces particles toward the epithelium in airways and alveoli. Resp. Physiol. 80(1):17–32 (1990).

    Article  CAS  Google Scholar 

  31. A. Peters, B. Veronesi, L. Calderon-Garciduenas, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part. Fibre Toxicol. 3:13 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. J. Iravani, and A. van As. Mucus transport in the tracheobronchial tree of normal and bronchitic rats. J. Pathol. 106(2):81–93 (1972).

    Article  PubMed  CAS  Google Scholar 

  33. H. J. M. Van De Donk, J. Zuidema, and F. W. H. M. Merkus. Correlation between the sensitivity of the ciliary beat frequency of human adenoid tissue and chicken embryo tracheas for some drugs. Rhinology 20(2):81–87 (1982).

    PubMed  Google Scholar 

  34. W. M. Boek, S. G. Romeijn, K. Graamans, J. C. Verhoef, F. W. H. M. Merkus, and E. H. Huizing. Validation of animal experiments on ciliary function in vitro. I. The influence of substances used clinically. Acta Oto-Laryngol. 119(1):93–97 (1999).

    Article  CAS  Google Scholar 

  35. W. M. Boek, S. G. Romeijn, K. Graamans, J. C. Verhoef, F. W. H. M. Merkus, and E. H. Huizing. Validation of animal experiments on ciliary function in vitro. II. The influence of absorption enhancers, preservatives and physiologic saline. Acta Oto-Laryngol. 119(1):98–101 (1999).

    Article  CAS  Google Scholar 

  36. P. Merkus, S. G. Romeijn, J. Coos Verhoef, F. W. H. M. Merkus, and P. F. Schouwenburg. Classification of cilio-inhibiting effects of nasal drugs. Laryngoscope. 111(4I):595–602 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. M. Sakagami. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv. Drug Deliv. Rev. 58(9–10):1030–1060 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. E. B. M. B. Prophet, J. B. Arrington, and L. H. Sobin (eds.). Laboratory Methods in Histotechnology, American Registry of Pathology: Armed Forces Insitute of Pathology, Washington (DC), 1994.

  39. P. Gehr, M. Bachofen, and E. R. Weibel. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Resp. Physiol. 32(2):121–140 (1978).

    Article  CAS  Google Scholar 

  40. V. Gerber, P. Gehr, R. Straub, M. Frenz, M. King, and V. Im Hof. Mucus quality on horse tracheal epithelium: microscopic grading based on transparency. Resp. Physiol. 107(1):67–74 (1997).

    Article  CAS  Google Scholar 

  41. C. F. Clary-Meinesz, J. Cosson, P. Huitorel, and B. Blaive. Temperature effect on the ciliary beat frequency of human nasal and tracheal ciliated cells. Biol. Cell. 76(3):335–338 (1992).

    Article  PubMed  CAS  Google Scholar 

  42. A. J. Shah, and M. D. Donovan. Formulating gels for decreased mucociliary transport using rheologic properties: polyacrylic acids. AAPS PharmSciTech. 8(2) (2007).

  43. B. K. Rubin. Immotile cilia syndrome (primary ciliary dyskinesia) and inflammatory lung disease. Clin. Chest Med. 9(4):657–668 (1988).

    PubMed  CAS  Google Scholar 

  44. M. King. Relationship between mucus viscoelasticity and ciliary transport in guaran gel/frog palate model system. Biorheology. 17(3):249–254 (1980).

    PubMed  CAS  Google Scholar 

  45. M. King. Interrelation between mechanical properties of mucus and mucociliary transport: effect of pharmacologic interventions. Biorheology 16(1–2):57–68 (1979).

    PubMed  CAS  Google Scholar 

  46. S. A. Felicetti, R. K. Wolff, and B. A. Muggenburg. Comparison of tracheal mucous transport in rats, guinea pigs, rabbits, and dogs. J. Appl. Physiol. Resp. Environ. Exercise Physiol. 51(6):1612–1617 (1981).

    CAS  Google Scholar 

  47. W. Hofmann, and B. Asgharian. The effect of lung structure on mucociliary clearance and particle retention in human and rat lungs. Toxicol. Sci. 73(2):448–456 (2003).

    Article  PubMed  CAS  Google Scholar 

  48. W. M. Foster, E. Langenback, and E. H. Bergofsky. Measurement of tracheal and bronchial mucus velocities in man: relation to lung clearance. J. Appl. Physiol. Resp. Environ. Exercise Physiol. 48(6):965–971 (1980).

    CAS  Google Scholar 

  49. M. Salathe. Effects of ß-agonists on airway epithelial cells. J. Allergy Clin. Immun. 110(6):S275–S281 (2002).

    Article  PubMed  CAS  Google Scholar 

  50. M. King. Experimental models for studying mucociliary clearance. Eur. Resp. J. 11(1):222–228 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Leon Muijs and Beat Haenni are thanked for technical support and introduction to SEM/TEM imaging. Gregor Jung and Babette Hinkeldey are thanked for cover slip modification for the incubation chamber.

Financial support from the Federal German Ministry of Education and Research is gratefully acknowledged (Nano-Inhale-13N8890).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-M. Lehr.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Video 1

Exemplary video for mucociliary clearance of carbon particles. Particles are clearly and reproducibly transported on the tracheal tissue. Particle clearance is unidirectional and always to the proximal end of the trachea. Visualization and tracking of the carbon particles was realized by transition light microscopy. (×100, top view; MPG 2.78 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henning, A., Schneider, M., Bur, M. et al. Embryonic Chicken Trachea as a New In Vitro Model for the Investigation of Mucociliary Particle Clearance in the Airways. AAPS PharmSciTech 9, 521–527 (2008). https://doi.org/10.1208/s12249-008-9072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9072-6

Key words

Navigation