Skip to main content

Advertisement

Log in

Anti-melanoma Effects of Resiquimod (RSQ) In Vitro and in Combination with Immune Checkpoint Blockade In Vivo

  • Research Article
  • Recent Advances in Drug Delivery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Melanoma is the deadliest form of skin cancer and surgery is currently the most effective treatment. However, there are situations where surgery fails or is not an option to treat melanoma patients. Immunotherapy such as immune checkpoint blockade (e.g., anti-PD-1) can be effective as an alternative treatment for melanoma patients; however, the percentage of melanoma patients that exhibit complete responses from anti-PD-1 monotherapy is low, and a hostile immunosuppressive tumor microenvironment may be at least partly responsible. Resiquimod (RSQ) is an imidazoquinolinamine derivative and TLR-7/8 agonist that could enhance the antitumor activity of immune checkpoint blockade when these agents are combined as a treatment for melanoma. Here, the effect of combining systemic anti-PD-1 and locally administered RSQ on the survival of melanoma-challenged mice was tested. Our results demonstrated that anti-PD-1 in combination with RSQ can significantly prolong the survival of melanoma-challenged mice, compared to untreated mice and mice treated with anti-PD-1 alone. In addition, the in vitro studies showed that RSQ can mediate a direct anti-proliferative effect on melanoma cells. In conclusion, the combination of RSQ and anti-PD-1 may be a promising treatment for melanoma patients, especially as both treatments have already been used independently to safely treat melanoma patients.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bong AB, Bonnekoh B, Franke I, Schön MP, Ulrich J, Gollnick H. Imiquimod, a topical immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology. 2002;205(2):135–8.

    Article  CAS  PubMed  Google Scholar 

  2. Redondo P, de Olmo J, de Cerio AL-D, Inoges S, Marquina M, Melero I, et al. Imiquimod enhances the systemic immunity attained by local cryosurgery destruction of melanoma lesions. J Invest Dermatol. 2007;127(7):1673–80.

    Article  CAS  PubMed  Google Scholar 

  3. Van Zeijl M, Van Den Eertwegh A, Haanen J, Wouters M. (Neo) adjuvant systemic therapy for melanoma. Eur J Surg Oncol (EJSO). 2017;43(3):534–43.

    Article  PubMed  Google Scholar 

  4. Austin E, Mamalis A, Ho D, Jagdeo J. Laser and light-based therapy for cutaneous and soft-tissue metastases of malignant melanoma: a systematic review. Arch Dermatol Res. 2017;309(4):229–42.

    Article  PubMed  Google Scholar 

  5. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti–programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brahmer JR, Tykodi SS, Chow LQ, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793.

    Article  CAS  PubMed  Google Scholar 

  8. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46.

    Article  CAS  PubMed  Google Scholar 

  10. Darvin P, Toor SM, Nair VS, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11.

    Article  PubMed  Google Scholar 

  11. Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN, Puerto RB, et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat Commun. 2017;8(1):1747.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Daud AI, Loo K, Pauli ML, Sanchez-Rodriguez R, Sandoval PM, Taravati K, et al. Tumor immune profiling predicts response to anti–PD-1 therapy in human melanoma. J Clin Investig. 2016;126(9):3447–52.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guilloux Y, Viret C, Gervois N, Dréan EL, Pandolfino M-C, Diez E, et al. Defective lymphokine production by most CD8+ and CD4+ tumor-specific T cell clones derived from human melanoma-infiltrating lymphocytes in response to autologous tumor cells in vitro. Eur J Immunol. 1994;24(9):1966–73.

    Article  CAS  PubMed  Google Scholar 

  14. Viret C, Gervois N, Guilloux Y, Le Dréan E, Diez E, Jotereau F, et al. T cell activation by antigens on human melanoma cells—co-stimulation by B7–1 is neither sufficient nor necessary to stimulate IL-2 secretion by melanoma-specific T cell clones in vitro. Int Immunol. 1995;7(10):1535–43.

    Article  CAS  PubMed  Google Scholar 

  15. Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune set point. Nature. 2017;541(7637):321–30.

    Article  CAS  PubMed  Google Scholar 

  16. Gibson SJ, Lindh JM, Riter TR, Gleason RM, Rogers LM, Fuller AE, et al. Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol. 2002;218(1–2):74–86.

    Article  CAS  PubMed  Google Scholar 

  17. Asselin-Paturel C, Brizard G, Chemin K, Boonstra A, Garra A, Vicari A, et al. Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J Exp Med. 2005;201(7):1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marabelle A, Andtbacka R, Harrington K, Melero I, Leidner R, de Baere T, et al. Starting the fight in the tumor: expert recommendations for the development of human intratumoral immunotherapy (HIT-IT). Ann Oncol. 2018;29(11):2163–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phuengkham H, Song C, Lim YT. A designer scaffold with immune nanoconverters for reverting immunosuppression and enhancing immune checkpoint blockade therapy. Adv Mater. 2019;31(42):1903242.

    Article  CAS  Google Scholar 

  20. De Vrieze J, Louage B, Deswarte K, Zhong Z, De Coen R, Van Herck S, et al. Potent lymphatic translocation and spatial control over innate immune activation by polymer–lipid amphiphile conjugates of small-molecule TLR7/8 agonists. Angew Chem Int Ed. 2019;58(43):15390–5.

    Article  Google Scholar 

  21. Rook AH, Gelfand JM, Wysocka M, Troxel AB, Benoit B, Surber C, et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood. 2015;126(12):1452–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Festenstein H, Garrido F. Tumour immunology: MHC antigens and malignancy. Nature. 1986;322(6079):502–3.

    Article  CAS  PubMed  Google Scholar 

  23. Garrido F, Cabrera T, Concha A, Glew S, Ruiz-Cabello F, Stern PL. Natural history of HLA expression during tumour development. Immunol Today. 1993;14(10):491–9.

    Article  CAS  PubMed  Google Scholar 

  24. Manome Y, Suzuki D, Mochizuki A, Saito E, Sasa K, Yoshimura K, et al. The inhibition of malignant melanoma cell invasion of bone by the TLR7 agonist R848 is dependent upon pro-inflammatory cytokines produced by bone marrow macrophages. Oncotarget. 2018;9(52):29934.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Caisová V, Vieru A, Kumžáková Z, Glaserová S, Husníková H, Vácová N, et al. Innate immunity based cancer immunotherapy: B16–F10 murine melanoma model. BMC Cancer. 2016;16(1):940.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sabado RL, Pavlick A, Gnjatic S, Cruz C, Vengco I, Hasan F, et al. Phase I/II study of Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with melanoma. J Immunother Cancer. 2013;1(1):P272.

    Article  PubMed Central  Google Scholar 

  27. Royal RE, Vence LM, Wray T, Cormier JN, Lee JE, Gershenwald JE, et al. A toll-like receptor agonist to drive melanoma regression as a vaccination adjuvant or by direct tumor application. Am Soc Clin Oncol. 2017;35:9582–9582.

    Article  Google Scholar 

  28. Vinod N, Hwang D, Azam SH, Van Swearingen AE, Wayne E, Fussell SC, et al. High-capacity poly (2-oxazoline) formulation of TLR 7/8 agonist extends survival in a chemo-insensitive, metastatic model of lung adenocarcinoma. Sci Adv. 2020;6(25):eaba5542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun J, Liu Z, Yao H, Zhang H, Zheng M, Shen N, et al. Azide‐masked resiquimod activated by hypoxia for selective tumor therapy. Adv Mater 2023; Accepted Author Manuscript 2207733. https://doi.org/10.1002/adma.202207733

  30. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24:148–54.

    Article  CAS  PubMed  Google Scholar 

  31. El-Khattouti A, Selimovic D, Hannig M, Taylor EB, AbdElmageed ZY, Hassan SY, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20(2):266–86.

    Article  CAS  PubMed  Google Scholar 

  32. Kalb ML, Glaser A, Stary G, Koszik F, Stingl G. TRAIL+ human plasmacytoid dendritic cells kill tumor cells in vitro: mechanisms of imiquimod-and IFN-α–mediated antitumor reactivity. J Immunol. 2012;188(4):1583–91.

    Article  CAS  PubMed  Google Scholar 

  33. Jones E, Dahm-Vicker M, Simon AK, Green A, Powrie F, Cerundolo V, et al. Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun. 2002;2:1.

    PubMed  Google Scholar 

  34. McCarter MD, Baumgartner J, Escobar GA, Richter D, Lewis K, Robinson W, et al. Immunosuppressive dendritic and regulatory T cells are upregulated in melanoma patients. Ann Surg Oncol. 2007;14(10):2854–60.

    Article  PubMed  Google Scholar 

  35. Kleffel S, Posch C, Barthel Steven R, Mueller H, Schlapbach C, Guenova E, et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell. 2015;162(6):1242–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sallam MA, Shields CW IV, Prakash S, Kim J, Pan DC, Mitragotri S. A dual macrophage polarizer conjugate for synergistic melanoma therapy. J Control Release. 2021;335:333–44.

    Article  CAS  PubMed  Google Scholar 

  37. Fernández I, Peña A, Del Teso N, Pérez V, Rodríguez-Cuesta J. Clinical biochemistry parameters in C57BL/6J mice after blood collection from the submandibular vein and retroorbital plexus. J Am Assoc Lab Anim Sci. 2010;49(2):202–6.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

A.K.S acknowledges support from the NIH (P30 CA086862) and the Lyle and Sharon Bighley Chair of Pharmaceutical Sciences. S.T acknowledges support from a Royal Thai Government Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the work as well as drafting, revising and final approval of the published manuscript.

Corresponding authors

Correspondence to Sean M. Geary or Aliasger K. Salem.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Aliasger Salem.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 99 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tambunlertchai, S., Geary, S.M., Naguib, Y.W. et al. Anti-melanoma Effects of Resiquimod (RSQ) In Vitro and in Combination with Immune Checkpoint Blockade In Vivo. AAPS J 25, 57 (2023). https://doi.org/10.1208/s12248-023-00824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00824-3

Keywords

Navigation