Skip to main content

Advertisement

Log in

Recommendations for the Development of Cell-Based Anti-Viral Vector Neutralizing Antibody Assays

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

A Correction to this article was published on 04 February 2020

This article has been updated

Abstract

Viral vector–based gene therapies (GTx) have received significant attention in the recent years and the number of ongoing GTx clinical trials is increasing. A platform of choice for many of these studies is adeno-associated virus (AAV). All humans may be exposed to natural AAV infections and could mount an immune response against the virus. Consequently, there can be a high prevalence of pre-existing anti-AAV immunity. This presents a potential limitation for AAV-based GTx due to the potential for AAV-specific antibodies to reduce the efficacy of the GTx. Therefore, appropriate assessment of potential subjects enrolled in these studies should include evaluation for the presence and degree of anti-AAV immunity, including anti-AAV neutralizing antibodies (NAb). Recommendations for the development and validation of cell-based anti-AAV NAb detection methods, including considerations related to selection of appropriate cell line, surrogate vector/reporter gene, assay matrix and controls, and methodologies for calculating assay cut-point are discussed herein. General recommendations for the key assay validation parameters are provided as well as considerations for the development of NAb diagnostic tests. This manuscript is produced by a group of scientists involved in GTx therapeutic development representing various companies. It is our intent to provide recommendations and guidance to industrial and academic laboratories working on viral vector based GTx modalities with the goal of achieving a more consistent approach to anti-AAV NAb assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 04 February 2020

    The first author’s name was published incorrectly as “Gorovits Boris”. The correct name is “Boris Gorovits”.

References

  1. Long BR, Sandza K, Holcomb J, Crockett L, Hayes GM, Arens J, et al. The impact of pre-existing immunity on the non-clinical pharmacodynamics of AAV5-based gene therapy. Mol Ther Methods Clin Dev. 2019;13:440–52. https://doi.org/10.1016/j.omtm.2019.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fitzpatrick Z, Leborgne C, Barbon E, Masat E, Ronzitti G, van Wittenberghe L, et al. Influence of pre-existing anti-capsid neutralizing and binding antibodies on AAV vector transduction. Mol Ther Methods Clin Dev. 2018;9:119–29. https://doi.org/10.1016/j.omtm.2018.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. MacLachlan TK, Milton MN, Turner O, Tukov F, Choi VW, Penraat J, et al. Nonclinical safety evaluation of scAAV8-RLBP1 for treatment of RLBP1 retinitis pigmentosa. Mol Ther Methods Clin Dev. 2018;8:105–20. https://doi.org/10.1016/j.omtm.2017.12.001.

    Article  CAS  PubMed  Google Scholar 

  4. Berry G, Murlidharan G, Asokan A. 30. Modulation of intracellular calcium enhances AAV transduction in the CNS. Mol Ther. 2016;24:S14. https://doi.org/10.1016/S1525-0016(16)32839-8.

    Article  Google Scholar 

  5. Hirosue S, Senn K, Clément N, Nonnenmacher M, Gigout L, Linden RM, et al. Effect of inhibition of dynein function and microtubule-altering drugs on AAV2 transduction. 2007;Virology, 367(1):10–8. https://doi.org/10.1016/j.virol.2007.05.009.

  6. Virella-Lowell I, Poirier A, Chesnut KA, Brantly M, Flotte TR. Inhibition of recombinant adeno-associated virus (rAAV) transduction by bronchial secretions from cystic fibrosis patients. Gene Ther. 2000;7(20):1783–9. https://doi.org/10.1038/sj.gt.3301268.

    Article  CAS  PubMed  Google Scholar 

  7. Nonnenmacher M, Weber T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther. 2012;19:649–58. https://doi.org/10.1038/gt.2012.6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bartlett JS, Wilcher R, Samulski RJ. Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol. 2000;74(6):2777–85. https://doi.org/10.1128/jvi.74.6.2777-2785.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiao P-J, Mitchell AM, Huang L, Li C, Samulski RJ. Disruption of microtubules post-virus entry enhances adeno-associated virus vector transduction. Hum Gene Ther. 2016;27(4):309–24. https://doi.org/10.1089/hum.2016.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schultz BR, Chamberlain JS. Recombinant adeno-associated virus transduction and integration. Mol Ther. 2008;16(7):1189–99. https://doi.org/10.1038/mt.2008.103.

    Article  CAS  PubMed  Google Scholar 

  11. Bottermann M, Foss S, van Tienen LM, Vaysburd M, Cruickshank J, O'Connell K, et al. TRIM21 mediates antibody inhibition of adenovirus-based gene delivery and vaccination. Proc Natl Acad Sci U S A. 2018;115(41):10440–5. https://doi.org/10.1073/pnas.1806314115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding W, Zhang L, Yan Z, Engelhardt JF. Intracellular trafficking of adeno-associated viral vectors. Gene Ther. 2005;12(11):873–80. https://doi.org/10.1038/sj.gt.3302527.

    Article  CAS  PubMed  Google Scholar 

  13. Rogers GL, Martino AT, Aslanidi GV, Jayandharan GR, Srivastava A, Herzog RW. Innate immune responses to AAV vectors. Front Microbiol. 2011;2:194. https://doi.org/10.3389/fmicb.2011.00194.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Suzuki M, Bertin TK, Rogers GL, Cela RG, Zolotukhin I, Palmer DJ, et al. Differential type I interferon-dependent transgene silencing of helper-dependent adenoviral vs. adeno-associated viral vectors in vivo. Mol Ther. 2013;21(4):796–805. https://doi.org/10.1038/mt.2012.277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA. The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol. 2006;80(19):9831–6. https://doi.org/10.1128/JVI.00878-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bell CL, Vandenberghe LH, Bell P, Limberis MP, Gao G-P, Van Vliet K, et al. The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J Clin Invest. 2011;121(6):2427–35. https://doi.org/10.1172/JCI57367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen S, Bryant KD, Sun J, Brown SM, Troupes A, Pulicherla N, et al. Glycan binding avidity determines the systemic fate of adeno-associated virus type 9. J Virol. 2012;86(19):10408–17. https://doi.org/10.1128/JVI.01155-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duan D, Li Q, Kao AW, Yue Y, Pessin JE, Engelhardt JF. Dynamin is required for recombinant adeno-associated virus type 2 infection. J Virol. 1999;73(12):10371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL, James LC. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol. 2013;14(4):327–36. https://doi.org/10.1038/ni.2548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natl Acad Sci U S A. 2010;107(46):19985–90. https://doi.org/10.1073/pnas.1014074107.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med. 2006;12(3):342–7. https://doi.org/10.1038/nm1358.

    Article  CAS  PubMed  Google Scholar 

  22. Mingozzi F, High KA. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape. Ann Rev Virol. 2017;4(1):511–34. https://doi.org/10.1146/annurev-virology-101416-041936.

    Article  CAS  Google Scholar 

  23. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE, et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med. 2007;13(4):419–22. https://doi.org/10.1038/nm1549.

    Article  CAS  PubMed  Google Scholar 

  24. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12. https://doi.org/10.1089/hum.2009.182.

    Article  CAS  PubMed  Google Scholar 

  25. Li C, Narkbunnam N, Samulski RJ, Asokan A, Hu G, Jacobson LJ, et al. Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther. 2012;19(3):288–94. https://doi.org/10.1038/gt.2011.90.

    Article  CAS  PubMed  Google Scholar 

  26. Murphy SL, Li H, Mingozzi F, Sabatino DE, Hui DJ, Edmonson SA, et al. Diverse IgG subclass responses to adeno-associated virus infection and vector administration. J Med Virol. 2009;81(1):65–74. https://doi.org/10.1002/jmv.21360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Calcedo R, Chichester JA, Wilson JM. Assessment of humoral, innate, and T-cell immune responses to adeno-associated virus vectors. Hum Gene Ther Methods. 2018. https://doi.org/10.1089/hum.2018.038.

  28. Falese L, Sandza K, Yates B, Triffault S, Gangar S, Long B, et al. Strategy to detect pre-existing immunity to AAV gene therapy. Gene Ther. 2017;24(12):768–78. https://doi.org/10.1038/gt.2017.95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meliani A, Leborgne C, Triffault S, Jeanson-Leh L, Veron P, Mingozzi F. Determination of anti-adeno-associated virus vector neutralizing antibody titer with an in vitro reporter system. Hum Gene Ther Methods. 2015;26(2):45–53. https://doi.org/10.1089/hgtb.2015.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thwaite R, Pages G, Chillon M, Bosch A. AAVrh.10 immunogenicity in mice and humans. Relevance of antibody cross-reactivity in human gene therapy. Gene Ther. 2015;22(2):196–201. https://doi.org/10.1038/gt.2014.103.

    Article  CAS  PubMed  Google Scholar 

  31. George LA, Sullivan SK, Giermasz A, Rasko JEJ, Samelson-Jones BJ, Ducore J, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med. 2017;377(23):2215–27. https://doi.org/10.1056/NEJMoa1708538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas JA, et al. Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood. 2006;108(10):3321–8. https://doi.org/10.1182/blood-2006-04-017913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meadows AS, Pineda RJ, Goodchild L, Bobo TA, Fu H. Threshold for pre-existing antibody levels limiting transduction efficiency of systemic rAAV9 gene delivery: relevance for translation. Mol Ther Methods Clin Dev. 2019;13:453–62. https://doi.org/10.1016/j.omtm.2019.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zolgensma Package Insert. 2019 [cited 2019 October 18]; Available from: https://www.fda.gov/media/126109/download.

  35. Majowicz A, Nijmeijer B, Lampen MH, Spronck L, de Haan M, Petry H, et al. Therapeutic hFIX activity achieved after single AAV5-hFIX treatment in hemophilia B patients and NHPs with pre-existing anti-AAV5 NABs. Mol Ther Methods Clin Dev. 2019;14:27–36. https://doi.org/10.1016/j.omtm.2019.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martino AT, Suzuki M, Markusic DM, Zolotukhin I, Ryals RC, Moghimi B, et al. The genome of self-complementary adeno-associated viral vectors increases Toll-like receptor 9-dependent innate immune responses in the liver. Blood. 2011;117(24):6459–68. https://doi.org/10.1182/blood-2010-10-314518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tseng YS, Gurda BL, Chipman P, McKenna R, Afione S, Chiorini JA, et al. Adeno-associated virus serotype 1 (AAV1)- and AAV5-antibody complex structures reveal evolutionary commonalities in parvovirus antigenic reactivity. J Virol. 2015;89(3):1794–808. https://doi.org/10.1128/jvi.02710-14.

    Article  PubMed  Google Scholar 

  38. Guo P, Zhang J, Chrzanowski M, Huang J, Chew H, Firrman JA, et al. Rapid AAV-neutralizing antibody determination with a cell-binding assay. Mol Ther Methods Clin Dev. 2019;13:40–6. https://doi.org/10.1016/j.omtm.2018.11.007.

    Article  CAS  PubMed  Google Scholar 

  39. Wang D, Zhong L, Li M, Li J, Tran K, Ren L, et al. Adeno-associated virus neutralizing antibodies in large animals and their impact on brain intraparenchymal gene transfer. Mol Ther Methods Clin Dev. 2018;11:65–72. https://doi.org/10.1016/j.omtm.2018.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang T, Xing B, Rao J. Recent developments of biological reporter technology for detecting gene expression. Biotechnol Genet Eng Rev. 2008;25:41–75. https://doi.org/10.5661/bger-25-41.

    Article  CAS  PubMed  Google Scholar 

  41. Kruzik A, Koppensteiner H, Fetahagic D, Hartlieb B, Dorn S, Romeder-Finger S, et al. Detection of biologically relevant low-titer neutralizing antibodies against adeno-associated virus require sensitive in vitro assays. Hum Gene Ther Methods. 2019;30(2):35–43. https://doi.org/10.1089/hgtb.2018.263.

    Article  CAS  PubMed  Google Scholar 

  42. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122(1):23–36. https://doi.org/10.1182/blood-2013-01-306647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hermanrud C, Ryner M, Luft T, Jensen PE, Ingenhoven K, Rat D, et al. Development and validation of cell-based luciferase reporter gene assays for measuring neutralizing anti-drug antibodies against interferon beta. J Immunol Methods. 2016;430:1–9. https://doi.org/10.1016/j.jim.2016.01.004.

    Article  CAS  PubMed  Google Scholar 

  44. Cherukuri A, Cahan H, de Hart G, Van Tuyl A, Slasor P, Bray L, et al. Immunogenicity to cerliponase alfa intracerebroventricular enzyme replacement therapy for CLN2 disease: results from a phase 1/2 study. Clin Immunol. 2018;197:68–76. https://doi.org/10.1016/j.clim.2018.09.003.

    Article  CAS  PubMed  Google Scholar 

  45. Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol. 1998;72(2):1438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Woodard KT, Liang KJ, Bennett WC, Samulski RJ. Heparan sulfate binding promotes accumulation of intravitreally delivered adeno-associated viral vectors at the retina for enhanced transduction but weakly influences tropism. J Virol. 2016;90(21):9878–88. https://doi.org/10.1128/jvi.01568-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Calcedo R, Morizono H, Wang L, McCarter R, He J, Jones D, et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol. 2011;18(9):1586–8. https://doi.org/10.1128/cvi.05107-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Immunogenicity Testing of Therapeutic Protein Products —Developing and Validating Assays for Anti-Drug Antibody Detection. Guidance for Industry. U.S. Department of Health and Human Services Food and Drug Administration. Center for Drug Evaluation and Research (CDER). Center for Biologics Evaluation and Research (CBER); 2019 [cited 2019 July]; Available from: https://www.fda.gov/media/119788/download.

  49. Leborgne C, Latournerie V, Boutin S, Desgue D, Quere A, Pignot E, et al. Prevalence and long-term monitoring of humoral immunity against adeno-associated virus in Duchenne muscular dystrophy patients. Cell Immunol. 2019;342:103780. https://doi.org/10.1016/j.cellimm.2018.03.004.

    Article  CAS  PubMed  Google Scholar 

  50. Shankar G, Devanarayan V, Amaravadi L, Barrett YC, Bowsher R, Finco-Kent D, et al. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. J Pharm Biomed Anal. 2008;48(5):1267–81. https://doi.org/10.1016/j.jpba.2008.09.020.

    Article  CAS  PubMed  Google Scholar 

  51. Gupta S, Devanarayan V, Finco D, Gunn GR 3rd, Kirshner S, Richards S, et al. Recommendations for the validation of cell-based assays used for the detection of neutralizing antibody immune responses elicited against biological therapeutics. J Pharm Biomed Anal. 2011;55(5):878–88. https://doi.org/10.1016/j.jpba.2011.03.038.

    Article  CAS  PubMed  Google Scholar 

  52. Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018;8:87–104. https://doi.org/10.1016/j.omtm.2017.11.007.

    Article  CAS  PubMed  Google Scholar 

  53. Devanarayan V, Smith WC, Brunelle RL, Seger ME, Krug K, Bowsher RR. Recommendations for systematic statistical computation of immunogenicity cut points. AAPS J. 2017;19(5):1487–98. https://doi.org/10.1208/s12248-017-0107-3.

    Article  CAS  PubMed  Google Scholar 

  54. Kumar SC, DelCarpini JA, Qu Q, Kane M, Gorovits B. Mitigation of pre-existing antibodies to a biotherapeutic in non-clinical species when establishing anti-drug antibody assay cutpoint. AAPS J. 2017;19(1):313–9. https://doi.org/10.1208/s12248-016-0011-2.

    Article  CAS  PubMed  Google Scholar 

  55. Mikulskis A, Yeung D, Chen W, Mehta D, Amaravadi L. Novel data analysis methods to overcome cut point challenges and enable comprehensive assessment of antidrug binding activity in confirmatory assays. J Immunol Methods. 2013;392(1–2):38–48. https://doi.org/10.1016/j.jim.2013.03.008.

    Article  CAS  PubMed  Google Scholar 

  56. Schaarschmidt F, Hofmann M, Jaki T, Grun B, Hothorn LA. Statistical approaches for the determination of cut points in anti-drug antibody bioassays. J Immunol Methods. 2015;418:84–100. https://doi.org/10.1016/j.jim.2015.02.004.

    Article  CAS  PubMed  Google Scholar 

  57. In Vitro Companion Diagnostic Devices. Guidance for Industry and Food and Drug Administration Staff. Food and Drug Administration; 2014 [cited 2019 September]; Available from: https://www.fda.gov/media/81309/download.

  58. FDA. Principles for Codevelopment of an In Vitro Companion Diagnostic Device with a Therapeutic Product. Food and Drug Administration; 2016 [cited 2019]; Available from: https://www.fda.gov/media/99030/download.

  59. Gray SJ, Nagabhushan Kalburgi S, McCown TJ, Jude SR. Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther. 2013;20(4):450–9. https://doi.org/10.1038/gt.2012.101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moskalenko M, Chen L, van Roey M, Donahue BA, Snyder RO, McArthur JG, et al. Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J Virol. 2000;74(4):1761–6. https://doi.org/10.1128/jvi.74.4.1761-1766.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scallan CD, Jiang H, Liu T, Patarroyo-White S, Sommer JM, Zhou S, et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood. 2006;107(5):1810–7. https://doi.org/10.1182/blood-2005-08-3229.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Manuscript authors worked as part of the American Association of Pharmaceutical Scientists community and are sincerely grateful to the entire AAPS organization for the support and opportunities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Gorovits.

Ethics declarations

AAV adeno-associated virus

AAV binding (total) antibodies (TAb) immunoglobulins able to specifically bind to AAV capsid protein epitopes. These antibodies may be neutralizing or non-neutralizing

AAV neutralizing antibodies (NAb) immunoglobulins able to specifically bind to AAV capsid protein epitopes and inhibit one or more critical steps involved in AAV infectivity and cell transduction

Companion diagnostic (CDx) an in vitro test method which provides information that is essential for the safe and effective use of a corresponding drug or biologic product

Gene therapy (GTx) a technique that uses genes, or genetic modification, to treat or prevent disease

Transgenea gene that is transferred due to GTx treatment

Transgene expression of mRNA or protein

Viral vector viral based tools used to deliver genetical material to cells

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The first author’s name was published incorrectly as “Gorovits Boris”. The correct name is “Boris Gorovits”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorovits, B., Fiscella, M., Havert, M. et al. Recommendations for the Development of Cell-Based Anti-Viral Vector Neutralizing Antibody Assays. AAPS J 22, 24 (2020). https://doi.org/10.1208/s12248-019-0403-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0403-1

KEY WORDS

Navigation