Skip to main content

Advertisement

Log in

Mesenchymal Stromal/Stem Cell and Minocycline-Loaded Hydrogels Inhibit the Growth of Staphylococcus aureus that Evades Immunomodulation of Blood-Derived Leukocytes

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Mesenchymal stromal/stem cells (MSCs) have demonstrated favorable wound healing properties in addition to their differentiation capacity. MSCs encapsulated in biomaterials such as gelatin and polyethylene glycol (PEG) composite hydrogels have displayed an immunophenotype change that leads to the release of cytokines and growth factors to accelerate wound healing. However, therapeutic potential of implanted MSC-loaded hydrogels may be limited by non-specific protein adsorption that facilitates adhesion of bacterial pathogens such as planktonic Staphylococcus aureus (SA) to the surface with subsequent biofilm formation resistant to immune cell recognition and antibiotic activity. In this study, we demonstrate that blood-derived primary leukocytes and bone marrow-derived MSCs cannot inhibit colony-forming abilities of planktonic or biofilm-associated SA. However, we show that hydrogels loaded with MSCs and minocycline significantly inhibit colony-forming abilities of planktonic SA while maintaining MSC viability and multipotency. Our results suggest that minocycline and MSC-loaded hydrogels may decrease the bioburden of SA at implant sites in wounds, and may improve the wound healing capabilities of MSC-loaded hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol. 2009;217(2):318–24.

    Article  CAS  PubMed  Google Scholar 

  2. Reitamo S, Remitz A, Tamai K, Uitto J. Interleukin-10 modulates type I collagen and matrix metalloprotease gene expression in cultured human skin fibroblasts. J Clin Invest. 1994;94(6):2489–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Jeon YK, Jang YH, Yoo DR, Kim SN, Lee SK, Nam MJ. Mesenchymal stem cells’ interaction with skin: wound-healing effect on fibroblast cells and skin tissue. Wound Repair Regen. 2010;18(6):655–61.

    Article  PubMed  Google Scholar 

  4. Brown JM, Nemeth K, Kushnir-Sukhov NM, Metcalfe DD, Mezey E. Bone marrow stromal cells inhibit mast cell function via a COX2-dependent mechanism. Clin Exp Allergy. 2011;41(4):526–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Renault MA, Roncalli J, Tongers J, Misener S, Thorne T, Jujo K, et al. The Hedgehog transcription factor Gli3 modulates angiogenesis. Circ Res. 2009;105(8):818–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gruber R, Kandler B, Holzmann P, Vögele-Kadletz M, Losert U, Fischer MB, et al. Bone marrow stromal cells can provide a local environment that favors migration and formation of tubular structures of endothelial cells. Tissue Eng. 2005;11(5–6):896–903.

    Article  CAS  PubMed  Google Scholar 

  7. Kaigler D, Krebsbach PH, Polverini PJ, Mooney DJ. Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng. 2003;9(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  8. Au P, Tam J, Fukumura D, Jain RK. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood. 2008;111(9):4551–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bevan D, Gherardi E, Fan TP, Edwards D, Warn R. Diverse and potent activities of HGF/SF in skin wound repair. J Pathol. 2004;203(3):831–8.

    Article  CAS  PubMed  Google Scholar 

  10. Shukla MN, Rose JL, Ray R, Lathrop KL, Ray A, Ray P. Hepatocyte growth factor inhibits epithelial to myofibroblast transition in lung cells via Smad7. Am J Respir Cell Mol Biol. 2009;40(6):643–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Fu Y, Xu K, Zheng X, Giacomin AJ, Mix AW, Kao WJ. 3D cell entrapment in crosslinked thiolated gelatin-poly (ethylene glycol) diacrylate hydrogels. Biomaterials. 2012;33(1):48–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cantu DA, Hematti P, Kao WJ. Cell encapsulating biomaterial regulates mesenchymal stromal/stem cell differentiation and macrophage immunophenotype. Stem Cells Transl Med. 2012;1(10):740–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wang C, Varshney RR, Wang DA. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev. 2010;62(7–8):699–710.

    Article  CAS  PubMed  Google Scholar 

  14. Waldeck H, Kao WJ. Effect of the Addition of a Labile Gelatin Component on the Degradation and Solute Release Kinetics of a Stable PEG Hydrogel. J Biomater Sci Polym Ed. 2011.

  15. Kleinbeck KR, Bader RA, Kao WJ. Concurrent in vitro release of silver sulfadiazine and bupivacaine from semi-interpenetrating networks for wound management. J Burn Care Res. 2009;30(1):98–104.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7(4):429–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJ, Zaat SA, et al. Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med. 2012;4 (153):153rv10.

  18. Simoes M, Simoes LC, Vieira MJ. A review of current and emergent biofilm control strategies. Food Sci Technol. 2010;43:573–83.

    CAS  Google Scholar 

  19. Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32(28):6692–709.

    Article  CAS  PubMed  Google Scholar 

  20. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 2012;33(26):5967–82.

    Article  CAS  PubMed  Google Scholar 

  21. Fehring TK, Odum SM, Berend KR, Jiranek WA, Parvizi J, Bozic KJ, et al. Failure of irrigation and débridement for early postoperative periprosthetic infection. Clin Orthop Relat Res. 2013;471(1):250–7.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Tyndall A, Pistoia V. Mesenchymal stem cells combat sepsis. Nat Med. 2009;15(1):18–20.

    Article  CAS  PubMed  Google Scholar 

  23. Waldeck H, Wang X, Joyce E, Kao WJ. Active leukocyte detachment and apoptosis/necrosis on PEG hydrogels and the implication in the host inflammatory response. Biomaterials. 2012;33(1):29–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Maecker HT, Trotter J. Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A. 2006;69(9):1037–42.

    Article  PubMed  Google Scholar 

  25. Cohen HC, Joyce EJ, Kao WJ. Biomaterials selectively modulate interactions between human blood-derived polymorphonuclear leukocytes and monocytes. Am J Pathol. 2013;182(6):2180–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wang X, Schmidt DR, Joyce EJ, Kao WJ. Application of MS-based proteomics to study serum protein adsorption/absorption and complement C3 activation on poly (ethylene glycol) hydrogels. J Biomater Sci Polym Ed. 2010.

  27. Trivedi P, Hematti P. Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol. 2008;36(3):350–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. Int Sociol Cell Ther position statement Cyt. 2006;8(4):315–7.

    CAS  Google Scholar 

  29. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999;37(6):1771–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Saïd-Salim B, Porcella SF, et al. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol. 2005;175(6):3907–19.

    Article  CAS  PubMed  Google Scholar 

  31. Golic I, Velickovic K, Markelic M, Stancic A, Jankovic A, Vucetic M, et al. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes. Eur J Histochem. 2014;58(3):2377.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Subbiah R, Du P, Van SY, Suhaeri M, Hwang MP, Lee K, et al. Fibronectin-tethered graphene oxide as an artificial matrix for osteogenesis. Biomed Mater. 2014;9(6):065003.

    Article  PubMed  Google Scholar 

  33. Pester JK, Stumpfe ST, Steinert S, Marintschev I, Plettenberg HK, Aurich M, et al. Histological, biochemical and spectroscopic changes of articular cartilage in osteoarthritis: is there a chance for spectroscopic evaluation? Z Orthop Unfall. 2014;152(5):469–79.

    Article  CAS  PubMed  Google Scholar 

  34. Yang M, Zhang L, Stevens J, Gibson G. CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line. Bone. 2014;69C:118–25.

    Article  Google Scholar 

  35. Li G, Yao W, Jiang H. Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue. J Nutr. 2014.

  36. Aziz N, Nishanian P, Fahey JL. Levels of cytokines and immune activation markers in plasma in human immunodeficiency virus infection: quality control procedures. Clin Diagn Lab Immunol. 1998;5(6):755–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Lee SJ, Li Z, Sherman B, Foster CS. Serum levels of tumor necrosis factor-alpha and interleukin-6 in ocular cicatricial pemphigoid. Invest Optha & Vis Sci. 1993;34(13):3522–5.

    CAS  Google Scholar 

  38. Kleiner G, Marcuzzi A, Zanin V, Monasta L, Zauli G. Cytokine levels in the serum of healthy subjects. Mediators Inflamm. 2013;2013:434010.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Hoy A, Trégouët D, Leininger-Muller B, Poirier O, Maurice M, Sass C, et al. Serum myeloperoxidase concentration in a healthy population: biological variations, familial resemblance and new genetic polymorphisms. Eur J Hum Genet. 2001;9(10):780–6.

    Article  CAS  PubMed  Google Scholar 

  40. Chang YH, Lin IL, Tsay GJ, Yang SC, Yang TP, Ho KT, et al. Elevated circulatory MMP-2 and MMP-9 levels and activities in patients with rheumatoid arthritis and systemic lupus erythematosus. Clin Biochem. 2008;41(12):955–9.

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi SD, Braughton KR, Palazzolo-Ballance AM, Kennedy AD, Sampaio E, Kristosturyan E, et al. Rapid neutrophil destruction following phagocytosis of Staphylococcus aureus. J Innate Immun. 2010;2(6):560–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Bantel H, Sinha B, Domschke W, Peters G, Schulze-Osthoff K, Jänicke RU. Alpha-toxin is a mediator of staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J Cell Biol. 2001;155(4):637–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Genestier AL, Michallet MC, Prévost G, Bellot G, Chalabreysse L, Peyrol S, et al. Staphylococcus aureus Panton-valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J Clin Invest. 2005;115(11):3117–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kobayashi SD, Braughton KR, Whitney AR, Voyich JM, Schwan TG, Musser JM, et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci U S A. 2003;100(19):10948–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kobayashi SD, Voyich JM, Buhl CL, Stahl RM, DeLeo FR. Global changes in gene expression by human polymorphonuclear leukocytes during receptor-mediated phagocytosis: cell fate is regulated at the level of gene expression. Proc Natl Acad Sci U S A. 2002;99(10):6901–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Resch A, Rosenstein R, Nerz C, Götz F. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol. 2005;71(5):2663–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Leid JG, Shirtliff ME, Costerton JW, Stoodley P. Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun. 2002;70(11):6339–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Cowburn AS, Deighton J, Walmsley SR, Chilvers ER. The survival effect of TNF-alpha in human neutrophils is mediated via NF-kappa B-dependent IL-8 release. Eur J Immunol. 2004;34(6):1733–43.

    Article  CAS  PubMed  Google Scholar 

  49. Maianski NA, Roos D, Kuijpers TW. Tumor necrosis factor alpha induces a caspase-independent death pathway in human neutrophils. Blood. 2003;101(5):1987–95.

    Article  CAS  PubMed  Google Scholar 

  50. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells. 2008;26(1):151–62.

    Article  CAS  PubMed  Google Scholar 

  51. El Kebir D, József L, Pan W, Filep JG. Myeloperoxidase delays neutrophil apoptosis through CD11b/CD18 integrins and prolongs inflammation. Circ Res. 2008;103(4):352–9.

    Article  PubMed  Google Scholar 

  52. Kolaczkowska E, Koziol A, Plytycz B, Arnold B, Opdenakker G. Altered apoptosis of inflammatory neutrophils in MMP-9-deficient mice is due to lower expression and activity of caspase-3. Immunol Lett. 2009;126(1–2):73–82.

    Article  CAS  PubMed  Google Scholar 

  53. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E (2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–9.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood. 2011;118(2):330–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med. 2010;182(8):1047–57.

    Article  CAS  PubMed  Google Scholar 

  56. Schönfeld P, Siemen D, Kreutzmann P, Franz C, Wojtczak L. Interaction of the antibiotic minocycline with liver mitochondria—role of membrane permeabilization in the impairment of respiration. FEBS J. 2013;280(24):6589–99.

    Article  PubMed  Google Scholar 

  57. Li H, Zhang C, Liu P, Liu W, Gao Y, Sun S. In vitro interactions between fluconazole and minocycline against mixed cultures of Candida albicans and Staphylococcus aureus. J Microbiol Immunol Infect. 2014.

  58. Cunha BA. Minocycline, often forgotten but preferred to trimethoprim-sulfamethoxazole or doxycycline for the treatment of community-acquired meticillin-resistant Staphylococcus aureus skin and soft-tissue infections. Int J Antimicrob Agents. 2013;42(6):497–9.

    Article  CAS  PubMed  Google Scholar 

  59. Cunha BA. Minocycline is a reliable and effective oral option to treat meticillin-resistant Staphylococcus aureus skin and soft-tissue infections, including doxycycline treatment failures. Int J Antimicrob Agents. 2014;43(4):386–7.

    Article  CAS  PubMed  Google Scholar 

  60. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms from semi-interpenetrating networks of gelatin and poly (ethylene glycol) diacrylate. Pharm Res. 2009;26(9):2115–24.

    Article  CAS  PubMed  Google Scholar 

  61. Josef E, Barat K, Barsht I, Zilberman M, Bianco-Peled H. Composite hydrogels as a vehicle for releasing drugs with a wide range of hydrophobicities. Acta Biomater. 2013;9(11):8815–22.

    Article  CAS  PubMed  Google Scholar 

  62. Jordan J, Fernandez-Gomez FJ, Ramos M, Ikuta I, Aguirre N, Galindo MF. Minocycline and cytoprotection: shedding new light on a shadowy controversy. Curr Drug Deliv. 2007;4(3):225–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Wisconsin Carbone Cancer Center Experimental Pathology Laboratory for their assistance in MSC histology. This research was supported in part by the University of Wisconsin-Madison School of Pharmacy, the National Institutes of Health HL115482 grant, the National Institutes of Health Biotechnology Training Program HL115482 grant, and the University of Wisconsin Science and Medicine Graduate Research Scholars Fellowship.

Conflict of Interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyuan John Kao.

Additional information

David Antonio Cantu contributed significantly to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Monocyte and MSC viability in the presence of 24 h established biofilm-associated SA after 12 h of co-culture at 200x magnification. Adherent monocyte viability in co-culture with (a): Gel-PEG-Cys encapsulated MSCs and biofilm-associated SA; (b): with biofilm-associated SA; (c): with collagen encapsulated MSCs and biofilm-associated SA. Gel-PEG-Cys encapsulated MSC viability in co-culture with (d): biofilm-associated SA; (e): polycarbonate-adherent monocytes and biofilm-associated SA. Collagen encapsulated MSC viability in co-culture with (f): biofilm-associated SA; (g): adherent monocytes and biofilm-associated SA (GIF 98 kb)

High Resolution image (TIFF 699 kb)

Supplementary Figure 2

Mature biofilm-associated SA Log CFU/mL after 6 h (black rectangle) and 12 h (gray rectangle) MSC-monocyte/macrophage co-culture. P < 0.05 versus SA-only condition for 6 h co-culture (Asterisk) and for 12 h co-culture (Dagger). (GIF 105 kb)

High Resolution image (TIFF 493 kb)

Supplementary Figure 3

Cytokine concentrations for planktonic SA (OD600 = 0.5) in co-culture with encapsulated MSCs and adherent PMNs after 4 h of co-culture. * indicates below the detection range of the bioplex protein quantification assay (GIF 265 kb)

High Resolution image (TIFF 1265 kb)

Supplementary Figure 4

MSC viability imaged with live/dead stain after different doses of minocycline over 7 days. MSCs maintained viability up to 0.2 mg/ml minocycline after 7 days exposure (GIF 514 kb)

High Resolution image (TIFF 968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, A.D., Cantu, D.A., Vecchi, J.T. et al. Mesenchymal Stromal/Stem Cell and Minocycline-Loaded Hydrogels Inhibit the Growth of Staphylococcus aureus that Evades Immunomodulation of Blood-Derived Leukocytes. AAPS J 17, 620–630 (2015). https://doi.org/10.1208/s12248-015-9728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-015-9728-6

KEY WORDS

Navigation