Skip to main content
Log in

Glycylsarcosine uptake in rabbit renal brush border membrane vesicles isolated from outer cortex or outer medulla: Evidence for heterogeneous distribution of oligopeptide transporters

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

Studies were initially performed in rabbit brush border membrane vesicles (BBMV) prepared from whole cortex plus outer medulla. In these studies using combined tissues, two distinct peptide/H+ transport systems were found for glycylsarcosine (GlySar) uptake, with one representing a low-affinity/high-capacity system (Vm1=974 pmol/mg/10 sec and Km1=4819 μM) and the other a high-affinity/low-capacity system (Vm2=220 pmol/mg/10 sec and Km2=96 μM). Thus, under linear conditions, the high-affinity transporter accounted for about 92% of the total transport of dipeptide. To better define the regional heterogeneity of peptide transporter activity in kidney, subsequent studies were performed in vesicles prepared from separately harvested outer cortical and outer medullary tissue. In BBMV studies prepared from outer cortex, two saturable components were revealed for GlySar transport (low-affinity/high-capacity transport system: Vm1=1921 pmol/mg/10 sec and Km1=11714 μM; high-affinity/low-capacity transport system: Vm2=143 pmol/mg/10 sec and Km2=138 μM). However, in BBMV studies prepared from outer medulla, only one saturable component was revealed for GlySar transport (high-affinity/low-capacity transport system: Vm2=168 pmol/mg/10 sec and Km2=230 μM). Overall, these studies support the contention that peptides are handled sequentially in kidney (ie, first by low-affinity transporter PEPT1, and then by high-affinity transporter PEPT2) and that PEPT2 is primarily responsible for the renal reabsorption of peptides and peptidomimetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fei Y-J, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF, Singh SK, Boron WF, Hediger MA. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 1994; 368: 563–566.

    Article  CAS  PubMed  Google Scholar 

  2. Boll M, Markovich D, Weber W-M, Korte H, Daniel H, Murer H. Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, β-lactam antibiotics and ACE-inhibitors. Pflügers Arch.-Eur. J. Physiol. 1994; 429: 146–149.

    Article  CAS  Google Scholar 

  3. Boll M, Herget M, Wagener M, Weber WM, Markovich D, Biber J, Clauss W, Murer H, Daniel H. Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter. Proc. Natl. Acad. Sci. USA 1996; 93: 284–289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Liang R, Fei Y-J, Prasad PD, Ramamoorthy S, Han H, Yang-Feng TL, Hediger MA, Ganapathy V, Leibach FH. Human intestinal H+/peptide cotransporter: Cloning, functional expression and chromosomal localization. J. Biol. Chem. 1995; 270: 6456–6463.

    Article  CAS  PubMed  Google Scholar 

  5. Liu W, Liang R, Ramamoorthy S, Fei Y-J, Ganapathy ME, Hediger MA, Ganapathy V, Leibach FH. Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. Biochim. Biophys. Acta 1995; 1235: 461–466.

    Article  PubMed  Google Scholar 

  6. Miyamoto K-I, Shiraga T, Morita K, Yamamoto H, Haga H, Taketani Y, Tamai I, Sai Y, Tsuji A, Takeda E. Sequence, tissue distribution and developmental changes in rat intestinal oligopeptide transporter. Biochim. Biophys. Acta 1996; 1305: 34–38.

    Article  PubMed  Google Scholar 

  7. Saito H, Okuda M, Terada T, Sasaki S, Inui K-I. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of β-lactam antibiotics in intestine and kidney. J. Pharmacol. Exp. Ther. 1995; 275: 1631–1637.

    CAS  PubMed  Google Scholar 

  8. Saito H, Terada T, Okuda M, Sasaki S, Inui K-I. Molecular cloning and tissue distribution of rat peptide transporter PEPT2. Biochim. Biophys. Acta 1996; 1280: 173–177.

    Article  PubMed  Google Scholar 

  9. Freeman TC, Bentsen BS, Thwaites DT, Simmons NL. H+/Ditripeptide transporter (PEPT1) expression in the rabbit intestine. Pflügers Arch.-Eur. J. Physiol. 1995; 430: 394–400.

    Article  CAS  Google Scholar 

  10. Ogihara H, Saito H, Shin B-C, Terada T, Takenoshita S, Nagamachi Y, Inui K-I, Takata K. Immuno-localization of H+/peptide cotransporter in rat digestive tract. Biochem. Biophys. Res. Commun. 1996; 220: 848–852.

    Article  CAS  PubMed  Google Scholar 

  11. Smith DE, Pavlova A, Berger UV, Hediger MA, Yang T, Huang YG, Schnermann JB. Tubular localization and tissue distribution of peptide transporters in rat kidney. Pharm. Res. 1998; 15: 1244–1249.

    Article  CAS  PubMed  Google Scholar 

  12. Shen H, Smith DE, Yang T, Huang YG, Schnermann JB, Brosius FC III. Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am. J. Physiol. 1999; 276: F658-F665.

    CAS  PubMed  Google Scholar 

  13. Akarawut W, Lin C-J, Smith DE. Noncompetive inhibition of glycylsarcosine transport by quinapril in rabbit renal brush border membrane vesicles: Effect on high-affinity peptide transporter. J. Pharmacol. Exp. Ther. 1998; 287: 684–690.

    CAS  PubMed  Google Scholar 

  14. Miyamoto Y, Coone JL, Ganapathy V, Leibach, FH. Distribution and properties of the glycylsarcosine-transport system in rabbit renal proximal tubule: Studies with isolated brush-border-membrane vesicles. biochem. J. 1988; 249: 247–253.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Turner RJ, Moran A. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: Evidence from vesicle studies. Am. J. Physiol. 1982; 242: F406-F414.

    CAS  PubMed  Google Scholar 

  16. Kragh-Hansen U, Røigaard-Petersen H, Jacobsen C, Sheikh MI. Renal transport of neutral amino acids: Tubular localization of Na+-dependent phenylalanine-and glucose-transport systems. Biochem. J. 1984; 220: 15–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Jørgensen PL, Skou, JC. Purification and characterization of (Na+-K+)-ATPase in preREFtions from the outer medulla of rabbit kidney. Biochim. Biophys. Acta 1971; 233: 366–380.

    Article  PubMed  Google Scholar 

  18. Fiske CH, Subbarow Y. The colorimetric determination of phosphorous. J. Biol. Chem. 1925; 66: 375–400.

    CAS  Google Scholar 

  19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  20. Hopfer U, Nelson K, Perrotto J, Isselbacher KJ. Glucose transport in isolated brush-border membrane from rat small intestine. J. Biol. Chem. 1973; 248: 25–32.

    CAS  PubMed  Google Scholar 

  21. Ganapathy V, Burckhardt G, Leibach FH. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. J. Biol. Chem. 1984; 259: 8954–8959.

    CAS  PubMed  Google Scholar 

  22. Silbernagl S, Ganapathy V, Leibach FH. H+ gradient-driven dipeptide reabsorption in proximal tubule of rat kidney. Studies in vivo and in vitro. Am. J. Physiol. 1987; 253: F448-F457.

    CAS  PubMed  Google Scholar 

  23. Evers C, Haase W, Murer H, Kinne R. Properties of brush border vesicles isolated from rat kidney cortex by calcium precipitation. Membrane Biochem. 1978; 1: 203–219.

    Article  CAS  Google Scholar 

  24. Griffiths DA, Hall SD, Sokol PP. Effect of 3-azido-3-deoxythymidine (AZT) on organic ion transport in rat renal brush border membrane vesicles. J. Pharmacol. Exp. Ther. 1992; 260: 128–133.

    CAS  PubMed  Google Scholar 

  25. McKinney TD, Kunnemann ME. Procainamide transport in rabbit renal cortical brush border membrane vesicles. Am. J. Physiol. 1985; 249: F532-F541.

    CAS  PubMed  Google Scholar 

  26. Leibach FH, Ganapathy V. Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr. 1996; 16: 99–119.

    Article  CAS  PubMed  Google Scholar 

  27. Daniel H, Herget M. Cellular and molecular mechanisms of renal peptide transport. Am. J. Physiol. 1997; 273: F1-F8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Smith.

Additional information

Published: May 10, 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CJ., Smith, D.E. Glycylsarcosine uptake in rabbit renal brush border membrane vesicles isolated from outer cortex or outer medulla: Evidence for heterogeneous distribution of oligopeptide transporters. AAPS PharmSci 1, 1 (1999). https://doi.org/10.1208/ps010201

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps010201

KeyWords

Navigation