Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (2): 136-144    DOI: 10.11901/1005.3093.2021.535
  研究论文 本期目录 | 过刊浏览 |
铬对GH4169母合金中夹杂物的影响
冯晗旭1,2, 赵连祥3, 刘恩泽1(), 谭政1, 宁礼奎1, 佟健1, 郑志1, 李海英1, 刘凯4
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.陆军装备部驻沈阳地区军事代表局驻沈阳地区第二军事代表室 沈阳 110004
4.迈艾特(大连)汽车零部件有限公司 大连 116000
Effect of Chromium Quality on Inclusions in GH4169 Ingot
FENG Hanxu1,2, ZHAO Lianxiang3, LIU Enze1(), TAN Zheng1, NING Likui1, TONG Jian1, ZHENG Zhi1, LI Haiying1, LIU Kai4
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Military Representative Office of the Army Equipment Department in Shenyang, Shenyang 110004, China
4.Maiite (Dalian) Auto Parts Co. Ltd., Dalian 116000, China
引用本文:

冯晗旭, 赵连祥, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英, 刘凯. 铬对GH4169母合金中夹杂物的影响[J]. 材料研究学报, 2023, 37(2): 136-144.
Hanxu FENG, Lianxiang ZHAO, Enze LIU, Zheng TAN, Likui NING, Jian TONG, Zhi ZHENG, Haiying LI, Kai LIU. Effect of Chromium Quality on Inclusions in GH4169 Ingot[J]. Chinese Journal of Materials Research, 2023, 37(2): 136-144.

全文: PDF(16494 KB)   HTML
摘要: 

使用不同品质的铬原料用真空感应熔炼制备GH4169母合金。用光学显微镜和扫描电镜等设备研究合金锭中夹杂物的特征,并分析其形成机理。结果表明,铬的纯度提高则母合金中N、P、S和Mn元素的含量降低,母合金中夹杂物的类型由为氧化物、碳氮化物和复合型夹杂转变为单一氧化物且其含量降低。

关键词 金属材料GH4169杂质元素夹杂物JMatPro软件    
Abstract

Three kinds of GH4169 alloy ingot were made via vacuum induction melt-casting method with metal block chromium of different quality (i.e. high purity chromium, common chromium and micro-carbon ferrochrome) as raw materials. The characteristics of inclusions in superalloy ingots were investigated by optical microscope (OM) and scanning electron microscope (SEM), and their formation mechanism are analyzed by JMatPro software. It is found that the content of N, P, S and Mn in the ingots decreases with the increase of chromium purity. The types of inclusions in the ingots change to single oxides from oxides, carbonitrides and composite inclusions. The content of carbonitrides and composite inclusions gradually decreases with increasing chromium purity.

Key wordsmetallic materials    GH4169    chromium    impurity element    inclusion    JMatPro software
收稿日期: 2021-09-16     
ZTFLH:  TF133  
基金资助:辽宁省科技攻关计划(2019JH2/10100009)
作者简介: 冯晗旭,女,1996年生,硕士生
Sample No.CAlTiMoNbCrNiFe
1#0.0340.631.002.985.2018.1752.2Bal.
2#0.0310.751.003.005.2718.3551.8Bal.
3#0.0350.680.983.015.2918.2251.6Bal.
表1  真空感应熔炼的GH4169母合金的实际化学成分
图1  GH4169母合金的宏观形貌和取样位置
ONPSSiMn
Purity Cr0.0320.001≤0.0020.00090.054-
Ordinary Cr0.0980.010≤0.0020.00210.052-
Micro-carbon ferrochrome--0.0210.0151.07-
表2  铬原材料中杂质元素的含量(质量分数,%)
Sample No.ONPSSiMn
1#0.00180.00090.0020.00090.0270.016
2#0.00110.00350.0020.00090.0130.015
3#0.00130.00950.0050.00190.4000.100
表3  母合金铸锭中杂质元素的含量
Inclusion typeAverage size/μm
Oxide(Al, Mg)O1.11±0.047
(Al, Ca)O
(Al,Mg,Ca)O
Nitride(Ti,Nb)(C,N)1.00±0.046
Mixed(Al,Mg)O-(Ti,Nb)(C,N)1.83±0.134
(Al,Mg,Ca)O-(Ti,Nb)(C,N)
表4  GH4169母合金中夹杂物的类型和平均尺寸
图2  GH4169母合金中单层夹杂物的形貌和成分
图3  GH4169母合金中复合型夹杂物的形貌和元素分布
图4  GH4169中夹杂物的聚集
图5  GH4169母合金中顶部、中部和底部夹杂物的含量
图6  GH4169母合金中各类夹杂物的含量
图7  GH4169母合金中各种尺寸夹杂物的数量密度
图8  JMatPro模拟计算夹杂物中各元素的变化
图9  元素Al和O分别对M2O3夹杂物析出含量的影响
图10  元素Ti和N分别对MN夹杂物析出含量的影响
图11  CaO坩埚与合金液的反应以及氧化物夹杂形成的示意图
1 Kirka M M, Unocic K A, Raghavan N, et al. Microstructure development in electron beam-melted Inconel 718 and associated tensile properties [J]. JOM, 2016, 68(3): 1012
doi: 10.1007/s11837-016-1812-6
2 Zhang Y, Li X X, Wei K, et al. Element segregation in GH4169 superalloy large-scale ingot and billet manufactured by triple-melting [J]. Acta Metall. Sin., 2020, 56(8): 1123
doi: 10.11900/0412.1961.2020.00101
2 张 勇, 李鑫旭, 韦 康 等. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为 [J]. 金属学报, 2020, 56(8): 1123
3 Han Z Y, Zeng G, Liang S J, et al. Development in powder production technology of Ni-based superalloy [J]. Mater. China, 2014, 33(12): 748
3 韩志宇, 曾 光, 梁书锦 等. 镍基高温合金粉末制备技术的发展现状 [J]. 中国材料进展, 2014, 33(12): 748
4 Yang J L, Zhu X M, Xiong J Y, et al. Effect of inclusion size and distribution on low cycle fatigue properties of an FGH97 superalloy [J]. Rare Metal Mat. Eng., 2020, 49(5): 1614
4 杨金龙, 朱晓闽, 熊江英 等. 夹杂物尺寸及分布对FGH97高温合金低周疲劳性能的影响 [J]. 稀有金属材料与工程, 2020, 49(5): 1614
5 Hu D Y, Wang T, Ma Q H, et al. Effect of inclusions on low cycle fatigue lifetime in a powder metallurgy nickel-based superalloy FGH96 [J]. Int. J. Fatigue, 2018, 118: 237
doi: 10.1016/j.ijfatigue.2018.09.019
6 Zeng Y P, Zhang M C, Dong J X, et al. Study on crack initiation and propagation induced by inclusion in nickel-base P/M superalloy [J]. J. Mater. Eng., 2005, (3): 10
6 曾燕屏, 张麦仓, 董建新 等. 镍基粉末高温合金中夹杂物导致裂纹萌生和扩展行为的研究 [J]. 材料工程, 2005, (3): 10
7 Zhang Y, Zhang Y W, Zhang N, et al. Fracture character of low cycle fatigue of P/M superalloy FGH97 [J]. Acta Metall. Sin., 2010, 46(4): 444
doi: 10.3724/SP.J.1037.2009.00626
7 张 莹, 张义文, 张 娜 等. 粉末冶金高温合金FGH97的低周疲劳断裂特征 [J]. 金属学报, 2010, 46(4): 444
8 Liu X L, Hu C Y, Wang T Y. Influence mechanism of inclusion size on low cycle fatigue of powder metallurgy superalloy [J]. Fail. Anal. Prev., 2018, 13(2): 89
8 刘新灵, 胡春燕, 王天宇. 夹杂物尺寸对粉末高温合金低周疲劳寿命影响的机制 [J]. 失效分析与预防, 2018, 13(2): 89
9 Qu J L, Zhang X L, Yang S F, et al. Research on inclusions in powder metallurgy superalloy-a review [J]. Powd. Metal. Ind., 2020, 30(5): 1
9 曲敬龙, 张雪良, 杨树峰 等. 粉末高温合金中夹杂物问题的研究进展 [J]. 粉末冶金工业, 2020, 30(5): 1
10 You Q F, Yuan H, Zhao L H, et al. Removal inclusions from nickel-based superalloy by induced directional solidification during electron beam smelting [J]. Vacuum, 2018, 156: 39
doi: 10.1016/j.vacuum.2018.07.014
11 Kong H H, Yang S F, Qu J L, et al. Type and distribution of inclusion in GH4169 nickel-based superalloy [J]. Acta Aeronautica ET Astronautica Sinica, 2020, 41(4): 304
11 孔豪豪, 杨树峰, 曲敬龙 等. GH4169铸锭中夹杂物的类型及分布规律 [J]. 航空学报, 2020, 41(4): 304
12 Wang D, Yang S F, Qu J L, et al. Distribution of inclusions on surface of GH4169 ESR ingot [J]. Iron & Steel, 2021, 56(2): 155
12 王 迪, 杨树峰, 曲敬龙 等. GH4169电渣重熔铸锭表层夹杂物分布规律 [J]. 钢铁, 2021, 56(2): 155
13 Zhang H X, Ma G H, Meng Y, et al. Research on purification control technology of FGH96 master alloy [J]. Foundry, 2018, 67(7): 611
13 张华霞, 马国宏, 孟宇 等. FGH96母合金洁净化控制技术的研究 [J]. 铸造, 2018, 67(7): 611
14 Zhao H Q, Chen W Q. Effect of crucible material and top slag composition on the inclusion composition of tire cord steel [J]. J. Iron Steel Res., 2012, 24(3): 12
14 赵昊乾, 陈伟庆. 坩埚材质及顶渣成分对帘线钢夹杂物成分的影响 [J]. 钢铁研究学报, 2012, 24(3): 12
15 Gao X Y, Zhang L, Qu X H, et al. Investigation on the formation mechanism of non-metallic inclusions in high-aluminum and titanium-alloyed Ni-based superalloy [J]. Vacuum, 2020, 177: 109409
doi: 10.1016/j.vacuum.2020.109409
16 Jin W Z, Zhang W, Li T J, et al. Electromagnetic purification of master alloy ingot of K417 superalloy in vacuum [J]. Chin. J. Vac. Sci. Technol., 2011, 31(5): 589
16 金文中, 张 伟, 李廷举 等. K417高温合金母合金锭真空电磁净化技术研究 [J]. 真空科学与技术学报, 2011, 31(5): 589
17 Zhang X F, Yan L G. Regulating the non-metallic inclusions by pulsed electric current in molten metal [J]. Acta Metall. Sin., 2020, 56(3): 257
doi: 10.11900/0412.1961.2019.00391
17 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物 [J]. 金属学报, 2020, 56(3): 257
doi: 10.11900/0412.1961.2019.00391
18 Pu Y L, Kou S Z, Zhang Z D, et al. Effects of compound salt purifiers on composition and microstructure of GH4169 returned alloy [J]. Nonferrous Met., 2018(7): 57
18 蒲永亮, 寇生中, 张志栋 等. 复合盐净化剂对GH4169返回料成分和组织的影响 [J]. 有色金属, 2018(7): 57
19 Qian K, Chen B, Zhang L, et al. Kinetics study of nitrogen removal from liquid IN718 alloy during vacuum induction melting [J]. Vacuum, 2020, 179: 109521
doi: 10.1016/j.vacuum.2020.109521
20 Wang M M, Yang Y H, Wang D H, et al. Deep deoxidation and desulfurization of cast superalloy K417G [J]. Rare Metal Mat. Eng., 2018, 47(12): 3730
20 王慢慢, 杨彦红, 王道红 等. 铸造高温合金K417G深度脱氧脱硫的研究 [J]. 稀有金属材料与工程, 2018, 47(12): 3730
21 Ding Y T, Wang W, Li H F, et al. Purification in alloy GH3625 through vacuum induction remelting [J]. Rare Metal Mat. Eng., 2018, 47(2): 687
21 丁雨田, 王 伟, 李海峰 等. 真空感应重熔GH3625合金纯净化研究 [J]. 稀有金属材料与工程, 2018, 47(2): 687
22 Li J P, Zhang H R, Gao M, et al. Effect of vacuum level on the interfacial reactions between K417 superalloy and Y2O3 crucibles [J]. Vacuum, 2020, 182: 109701
doi: 10.1016/j.vacuum.2020.109701
23 Jang J M, Seo S H, Han J S, et al. Reassessment of TiN(s)=Ti+N equilibration in liquid iron [J]. ISIJ. Int., 2015, 55(11): 2318
doi: 10.2355/isijinternational.ISIJINT-2015-265
24 Li M G, Matsuura H, Tsukihashi F. Investigation on the formation mechanism of Ti-bearing non-metallic inclusions in Fe-Al-Ti-O-N alloy by inductive separation method [J]. Mater. Charact., 2018, 136: 358
doi: 10.1016/j.matchar.2017.12.033
25 Chai G M, Chen X C, Guo H J, et al. Formation mechanism of primary carbides in FGH96 superalloy [J]. Chin. J. Nonferrous Met., 2012, 22(8): 2205
25 柴国明, 陈希春, 郭汉杰. FGH96高温合金中一次碳化物形成规律 [J]. 中国有色金属学报, 2012, 22(8): 2205
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.