Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (6): 425-434    DOI: 10.11901/1005.3093.2021.406
  研究论文 本期目录 | 过刊浏览 |
碳纳米管掺杂影响液晶物理参数与显示性能的实验及第一性原理计算
刘裕1, 梁志奇2, 赵崧1, 常春蕊1()
1.华北理工大学理学院 唐山 063210
2.华北理工大学机械工程学院 唐山 063210
Experiment and First-principles Calculation on Effect of Carbon Nanotubes Doping on Physical Parameters and Display Properties of Liquid Crystal
LIU Yu1, LIANG Zhiqi2, ZHAO Song1, CHANG Chunrui1()
1.College of Science, North China University of Science and Technology, Tangshan 063210, China
2.College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, China
引用本文:

刘裕, 梁志奇, 赵崧, 常春蕊. 碳纳米管掺杂影响液晶物理参数与显示性能的实验及第一性原理计算[J]. 材料研究学报, 2022, 36(6): 425-434.
Yu LIU, Zhiqi LIANG, Song ZHAO, Chunrui CHANG. Experiment and First-principles Calculation on Effect of Carbon Nanotubes Doping on Physical Parameters and Display Properties of Liquid Crystal[J]. Chinese Journal of Materials Research, 2022, 36(6): 425-434.

全文: PDF(1676 KB)   HTML
摘要: 

将4"-正戊基-4-氰基联苯(5CB)液晶与液晶4-[反式-4-[(E)-1-丙烯基]环己基]苯腈以5∶1的比例混合,并将预处理的碳纳米管分别与5CB单晶和混晶复合,测试两种掺杂碳纳米管的液晶的光电和介电性能。结果表明:碳纳米管的掺入影响了液晶体系的阈值电压和介电各向异性,其中介电各向异性的增幅最高达到4.671%,并且展曲弹性常数也有所增大;碳纳米管的掺入也影响液晶体系的响应时间和粘滞系数,其中粘滞系数的降幅最高达到25.131%。实验还表明,混晶的介电各向异性高于单晶,且其响应时间和粘滞系数的降幅均比5CB单晶明显。混晶的更大优势是,与碳纳米管复合、改善复合体系的物理参数和显示性能。同时,理论研究结果表明,碳纳米管与液晶分子的结合能介于液晶分子与液晶分子、碳纳米管与碳纳米管之间,并且在液晶分子的诱导下碳纳米管产生诱导偶极矩,印证了碳纳米管掺杂可提高液晶的介电各向异性、降低其响应时间的实验结果。

关键词 复合材料阈值电压响应时间介电各向异性密度泛函理论相互作用    
Abstract

A mixed liquid crystal was firstly prepared with liquid crystals 4-Cyano-4'-pentylbiphenyl (5CB) and 4-[trans-4-[(E)-1-propenyl] cyclohexyl] benzonitrile in a ratio of 5∶1 as raw material. Then the plain liquid crystal 5CB and the mixed liquid crystal were compounded with the pretreated carbon nanotubes (CNTS) respectively, which were characterized in terms of their photoelectric and dielectric properties. The results show that the addition of CNTS affects the threshold voltage and dielectric anisotropy of the liquid crystal systems, as a result, the dielectric anisotropy increases by 4.671%, and the flexural elastic constant also increases; The addition of CNTS also affects the response time and viscosity coefficient of the liquid crystal systems, while the viscosity coefficient decreases by 25.131%. The experimental results also show that the dielectric anisotropy of the mixed liquid crystal is higher than that of the plain liquid crystal 5CB, while the decrease of response time and viscosity is more obvious. The greater advantage of the mixed liquid crystal is that the doping of carbon nanotubes can result in significant improvement in the physical parameters and display performance of the composite system. At the same time, the theoretical research results show that the binding energies of carbon nanotubes and liquid crystal molecules are between those of liquid crystal molecule pairs and carbon nanotube pairs respectively, as a result, dipole moments may be induced by the asymmetric charge distribution of the liquid crystal molecules adsorbed on carbon nanotubes, which can well interpretate the fact that the doped carbon nanotubes can improve the dielectric anisotropy of liquid crystal materials, while reduce the response time.

Key wordscomposite    threshold voltage    response time    dielectric anisotropy    density functional theory    interaction
收稿日期: 2021-07-15     
ZTFLH:  TB332  
基金资助:河北省自然科学基金(A2021209005);河北省教育厅项目(QN2021118)
作者简介: 刘 裕,男,1996年生,硕士生
图1  实验测试与计算参数关联图
图2  液晶分子的结构
图3  阻抗分析仪测试系统
图4  光电测试系统
图5  频率为1 kHz、峰峰值为1.8 V的类方波信号
图6  碳纳米管的SEM图
图7  不同液晶/碳纳米管复合体系的电容-电压曲线
Concentration

5CB/CNTs

Vth/V

Mixed LC/CNTs

Vth/V

0%0.68630.736
0.001%0.73020.7291
Amplification6.397%-0.9375%
0.005%0.71450.7425
Amplification4.109%0.8832%
表1  不同液晶/碳纳米管复合体系的阈值电压
Concentration

5CB/CNTs

Δε

Mixed LC/CNTs

Δε

0%11.4480057713.12442359
0.001%11.5503961813.19549275
Amplification0.894%0.542%
0.005%11.8745804113.73746503
Amplification3.726%4.671%
表2  不同液晶/碳纳米管复合体系的介电各向异性
图8  不同液晶/碳纳米管复合体系介电各向异性随掺杂浓度的变化
Concentration

5CB/CNTs

k11/N

Mixed LC/CNTs

k11/N

0%4.837×10-126.378×10-12
0.001%5.525×10-126.293×10-12
0.005%5.438×10-126.794×10-12
表3  不同液晶/碳纳米管复合体系的展曲弹性常数
图9  不同液晶/碳纳米管复合体系的归一化透光率随时间的变化
Concentration

5CB/CNTs

τon/s

Mixed LC/CNTs

τon/s

0%0.15720.1392
0.001%0.12060.0952
0.005%0.09940.0996
表4  不同液晶/碳纳米管复合体系的响应上升时间
Concentration

5CB/CNTs

τoff/s

Mixed LC/CNTs

τoff/s

0%0.04160.034
0.001%0.03320.0258
0.005%0.03180.0304
表5  不同液晶/碳纳米管复合体系的响应下降时间
图10  不同液晶/碳纳米管复合体系的响应时间
Concentration

5CB/CNTs

γ/Pa∙s

Mixed LC/CNTs

γ/Pa∙s

0%0.1380.1484
0.001%0.1250.111
Amplification-8.848%-25.131%
0.005%0.1180.141
Amplification-14.059%-4.751%
表6  不同液晶/碳纳米管复合体系的粘滞系数
图11  不同液晶/碳纳米管复合体系的粘滞系数随掺杂浓度的变化
MoleculeTotal energy/kJ∙mol-1Binding energy /kJ∙mol-1
CNT-16020259.55-
5CB-1972813.646-
16CN-1772811.692-
CNT/CNT-32040766.04-246.928
CNT/5CB-17993178.59-105.393
CNT/16CN-17793154.91-83.667
5CB/5CB-3945693.537-66.244
16CN/16CN-3545638.782-15.399
5CB/16CN-3745694.349-105.393
表7  各体系的总能量和结合能
图12  碳纳米管与液晶分子相互作用的稳定模型
Atom

CNT/5CB

charge/e∙atom-1

CNT/16CN

charge/e∙atom-1

C10.0110.012
C2-0.009-0.011
C30.0030.006
C40.0170.025
N1-0.009-0.011
R10.002-0.008
R20.001-0.04
H10.0020.027
表8  液晶分子和碳纳米管部分原子或结构的电荷转移量
1 Boruah B R. Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator [J]. American Journal of Physics, 2009, 77: 331
doi: 10.1119/1.3054349
2 Namkung J, Zou Y, Abu-Abed A, et al. Capacitive techniques to monitor of anchoring energy for liquid crystal sensors [J]. IEEE Sensors Journal, 2010, 10: 1479
doi: 10.1109/JSEN.2009.2038278
3 Galanis J, Nossal R, Losert W, et al. Nematic order in small systems: measuring the elastic and wall-anchoring constants in vibrofluidized granular rods [J]. Physical Review Letters, 2010, 105: 4
4 Sui Z M, Chen X, Wang L Y, et al. Study on the doping and interactions of metal nanoparticles in the lyotropic liquid crystals [J]. Acta Physico-Chimica Sinica, 2006, 22: 737
doi: 10.1016/S1872-1508(06)60030-2
5 Dierking I, Scalia G, Morales P. Liquid crystal-carbon nanotube dispersions [J]. Journal of Applied Physics, 2005, 97
6 Gorkunov M V, Osipov M A. Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles [J]. Soft Matter, 2011, 7: 4348
doi: 10.1039/c0sm01398f
7 Chang C R, Zhao Y, Liu Y, et al. Liquid crystallinity of carbon nanotubes [J]. Royal Society of Chemistry Advances, 2018, 8: 15780
8 Song W H, Kinloch I A, Windle A H. Nematic liquid crystallinity of multiwall carbon nanotubes [J]. Science, 2003, 302: 1363
doi: 10.1126/science.1089764
9 Guo Y Q, Li W J, Li X S, et al. Influences of nickel plated multi-walled carbon-nanotube on the electro-optical properties of nematic liquid crystal [J]. Nanotechnology, 2019, 30.
10 De Filpo G, Siprova S, Chidichimo G, et al. Alignment of single-walled carbon nanotubes in polymer dispersed liquid crystals [J]. Liquid Crystals, 2012, 39: 359
doi: 10.1080/02678292.2011.639908
11 Singh D, Singh U B, Pandey M B, et al. Electro-optic behaviour of nematic-swcnt nanocomposites under applied bias field [J]. Liquid Crystals, 2019, 46: 1389
doi: 10.1080/02678292.2019.1573329
12 Lagerwall J P F, Scalia G. Carbon nanotubes in liquid crystals [J]. Journal of Materials Chemistry, 2008, 18: 2890
doi: 10.1039/b802707b
13 Star A, Stoddart J F, Steuerman D, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes [J]. Angewandte Chemie International Edition, 2001, 40: 1721
doi: 10.1002/1521-3773(20010504)40:9<1721::AID-ANIE17210>3.0.CO;2-F
14 Song D H, Kim J W, Kim K H, et al. Ultrafast switching of randomly-aligned nematic liquid crystals [J]. Optics Express, 2012, 20: 11659
doi: 10.1364/OE.20.011659
15 Jakeman E, Raynes E P. Electro-optic response times in liquid crystals [J]. Physics Letters A, 1972, 39: 69
doi: 10.1016/0375-9601(72)90332-5
16 Tie W, Yang G H, Bhattacharyya S S, et al. Electric-field-induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal [J]. Journal of Physical Chemistry C, 2011, 115: 21652
doi: 10.1021/jp206961a
17 Peterson M S E, Georgiev G, Atherton T J, et al. Dielectric analysis of the interaction of nematic liquid crystals with carbon nanotubes [J]. Liquid Crystals, 2018, 45: 450
doi: 10.1080/02678292.2017.1346212
18 Ye W J, Yuan R, Dai Y Y, et al. Improvement of image sticking in liquid crystal display doped with gamma-Fe2O3 nanoparticles [J]. Nanomaterials, 2018, 8: 13
doi: 10.3390/nano8010013
19 Kaczmarek M, Dyadyusha A, Slussarenko S, et al. The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers [J]. Journal of Applied Physics, 2004, 96: 2616
doi: 10.1063/1.1778818
20 Zuo J M, Blaha P, Schwarz K. The theoretical charge density of silicon: experimental testing of exchange and correlation potentials [J]. Journal of Physics: Condensed Matter, 1997, 9: 7541
doi: 10.1088/0953-8984/9/36/004
21 Diao J J, Chang C R, Zhang Z M, et al. Reducing contact resistance of carbon nanotubes by Au doping [J]. Chinese Journal of Materials Research, 2017, 31(7): 511
21 刁加加, 常春蕊, 张志明 等. 金掺杂降低碳纳米管接触电阻的实验研究 [J]. 材料研究学报, 2017, 31(7): 511
doi: 10.11901/1005.3093.2016.394
22 Wang H M, He M S, Zhang Y Y. Carbon nanotube films: preparation and application in flexible electronics [J]. Acta Physico-Chimica Sinica, 2019, 35: 1207
doi: 10.3866/PKU.WHXB201811011
22 王灏珉, 何茂帅, 张莹莹. 碳纳米管薄膜的制备及其在柔性电子器件中的应用 [J]. 物理化学学报, 2019, 35: 1207
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.