Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (10): 721-729    DOI: 10.11901/1005.3093.2020.164
  研究论文 本期目录 | 过刊浏览 |
退火温度对冷轧Ti-13V-3Al-0.5Cu形状记忆合金组织结构与马氏体相变的影响
孙馗善1, 李珺2, 孟祥龙1(), 蔡伟1
1.哈尔滨工业大学材料科学与工程学院 哈尔滨 150006
2.东北林业大学机电工程学院 哈尔滨 150040
Effect of Annealing Temperature on Microstructure and Martensitic Transformation of Cold Rolled Ti-13V-3Al-0.5Cu Shape Memory Alloy
SUN Kuishan1, LI Jun2, MENG Xianglong1(), CAI Wei1
1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150006, China
2. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
引用本文:

孙馗善, 李珺, 孟祥龙, 蔡伟. 退火温度对冷轧Ti-13V-3Al-0.5Cu形状记忆合金组织结构与马氏体相变的影响[J]. 材料研究学报, 2020, 34(10): 721-729.
Kuishan SUN, Jun LI, Xianglong MENG, Wei CAI. Effect of Annealing Temperature on Microstructure and Martensitic Transformation of Cold Rolled Ti-13V-3Al-0.5Cu Shape Memory Alloy[J]. Chinese Journal of Materials Research, 2020, 34(10): 721-729.

全文: PDF(8957 KB)   HTML
摘要: 

使用XRD、TEM、DSC和室温拉伸等分析测试手段,对冷轧后经不同退火温度处理的Ti-13V-3Al-0.5Cu(%,原子分数)合金微观组织结构,马氏体相变行为,力学性能和形状记忆性能进行了研究。经冷轧、退火处理后,合金在室温下的组织主要为α"马氏体相,存在少量残余β母相、α相和Ti2Cu第二相。随着退火温度的增加,合金形状记忆性能先升高后降低;当退火温度为750℃时,在预应变量为6%的前提下可实现5.3%的可回复应变。其组织结构观察结果表明,经冷轧、退火处理后,合金中α"马氏体形貌由“V”字型自协作组态向择优取向的单一取向马氏体板条转化,界面可动性提升,马氏体临界再取向应力降低,形状记忆性能提高。

关键词 金属材料Ti-V-Al-Cu轻质记忆合金组织结构    
Abstract

The effect of post annealing temperature on the microstructure, martensitic transformation behavior, mechanical properties and shape memory effect of the cold rolled Ti-13V-3Al-0.5Cu (%, atomic fraction) alloy was systematically studied by means of XRD, TEM, DSC and tensile test at room temperature. The results showed that the phase composition of the alloy at room temperature was mainly α" phase, together with a small amount of remained β phase, α phase and Ti2Cu second phase. With the increasing annealing temperature, the shape memory property increased firstly and then decreased. When the annealing temperature is 750℃, the alloy showed a good shape memory effect and the recoverable strain up to 5.3% when the pre-strain was 6%. Furthermore, the morphology of martensite transformed from a V-shape like self-coordinated-structure to a structure of single preferential orientation when the alloy was subjected to a proper cold rolling and annealing treatment. Lower reorientation critical stress and better interface mobility were the main causes for the improvement of shape memory effect.

Key wordsmetallic materials    Ti-V-Al-Cu    light-weight shape memory alloy    microstructure
收稿日期: 2020-05-14     
ZTFLH:  TG15  
基金资助:国家自然科学基金(51871080);国家自然科学基金(51571073)
作者简介: 孙馗善,男,1995年生,博士
图1  合金拉伸样示意图
图2  冷轧后经不同温度退火Ti-13V-3Al-0.5Cu合金的室温X-射线衍射图谱
图3  Ti-V-Al-Cu的透射电镜明场像及其电子衍射花样
C.V.[100]α"[010]α"[001]α"
CV1[100]β[011]β[01ˉ1]β
CV2[1ˉ00]β[01ˉ1]β[011]β
CV3[010]β[101]β[101ˉ]β
CV4[01ˉ0] β[101ˉ]β[101]β
CV5[001]β[110]β[1ˉ10]β
CV6[001ˉ]β[1ˉ10]β[110]β
表1  马氏体相变中马氏体变体与母相的取向关系
C.V.TiC.V.Ti
CV10.93740001.0051-0.00320-0.00321.0051CV20.93740001.00510.003201.00510.0032
CV31.005100.003200.937400.003201.0051CV41.00510-0.003200.93740-0.003201.0051
CV51.00510.003200.00321.00510000.9374CV61.0051-0.00320-0.00321.00510000.9374
表2  马氏体变体与母相的晶格畸变矩阵
图4  Ti-V-Al-Cu合金中的自协作形貌示意图
图5  冷轧后经不同温度退火Ti-13V-3Al-0.5Cu合金的DSC曲线
图6  冷轧后经不同温度退火Ti-13V-3Al-0.5Cu合金的应力-应变曲线以及退火温度对强度及断裂应变的影响
图7  冷轧后经不同温度退火Ti-13V-3Al-0.5Cu合金预变形量为6%的应力-应变曲线
[1] Mohd J J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
[2] Bai J, Wang X L, Gu J L, et al. Martensitic transformation and crystal structure of Ni-Fe-Ga ferromagnetic shape memory alloys [J]. Chin. J. Mater. Res., 2014, 28: 881
[2] 白静, 王新丽, 顾江龙等. Ni-Fe-Ga磁致形状记忆合金的马氏体相变和晶体结构的研究 [J]. 材料研究学报, 2014, 28: 881
[3] Xue P F, Zhang F, Li Y, et al. Progress in Ti-based shape memory alloys [J]. Chin. J. Rare Met., 2015, 39: 84
[3] 薛朋飞, 张菲, 李岩等. 钛基形状记忆合金研究进展 [J]. 稀有金属, 2015, 39: 84
[4] Zhang X P, Zhang Y P. Recent advances in research and development of porous NiTi shape memory alloys [J]. Chin. J. Mater. Res., 2007, 21: 561
[4] 张新平, 张宇鹏. 多孔NiTi形状记忆合金研究进展 [J]. 材料研究学报, 2007, 21: 561
[5] Li B Y, Rong L J, Li Y Y. Development of biomedical porous Ti-Ni shape memory alloys [J]. Chin. J. Mater. Res., 2000, 14: 561
[5] 李丙运, 戎利建, 李依依. 生物医用多孔Ti-Ni形状记忆合金的研究进展 [J]. 材料研究学报, 2000, 14: 561
[6] Firstov G S, van Humbeeck J, Koval Y N. High-temperature shape memory alloys: Some recent developments [J]. Mater. Sci. Eng., 2004, 378A: 2
[7] Lee Pak J S, Lei C Y, Wayman C M. Atomic ordering in Ti-V-Al shape memory alloys [J]. Mater. Sci. Eng., 1991, 132A: 237
[8] Lei C Y, Lee Pak J S, Inoue H R P, et al. Shape memory behavior of Ti-V-Al alloys [A]. Proceedings of the International Conference of Martensitic Transformations (ICOMAT-92) [C]. Monterey, California, 1992: 539
[9] Lee Pak J S, Lei C Y, Wu M H, et al. Microstructures of athermal and stress-induced martensites of Ti-V-Al shape memory alloys [A]. Proceedings of the International Conference of Martensitic Transformations (ICOMAT-92) [C]. Monterey, California, 1992: 533
[10] Li W H. Martensitic transformation and shape memory effect of Ti-V-Al alloys [D]. Harbin: Harbin Institute of Technology, 2015
[10] 李威瀚. Ti-V-Al合金的马氏体相变与形状记忆效应 [D]. 哈尔滨: 哈尔滨工业大学, 2015
[11] Yang Z Y, Zheng X H, Cai W. Martensitic transformation and shape memory effect of Ti-V-Al lightweight high-temperature shape memory alloys [J]. Scr. Mater., 2015, 99: 97
[12] Wang X W. Martensitic transformation and strain recovery properties of Ti-V-Al alloy with Sc addition [D]. Harbin: Harbin Institute of Technology, 2016
[12] 王新旺. Sc掺杂Ti-V-Al形状记忆合金马氏体相变与应变恢复特性 [D]. 哈尔滨: 哈尔滨工业大学, 2016
[13] Yang Z Y, Zheng X H, Wu Y, et al. Martensitic transformation and shape memory behavior of Ti-V-Al-Fe lightweight shape memory alloys [J]. J. Alloys Compd., 2016, 680: 462
[14] Horiuchi Y, Nakayama K, Inamura T, et al. Effect of Cu addition on shape memory behavior of Ti-18 mol% Nb alloys [J]. Mater. Trans., 2007, 48: 414
[15] He Y H, Zhang Y Q, Jiang Y H, et al. Fabrication and characterization of superelastic Ti-Nb alloy enhanced with antimicrobial Cu via spark plasma sintering for biomedical applications [J]. J. Mater. Res., 2017, 32: 2510
[16] Sun K S, Yi X Y, Sun B, et al. Microstructure and mechanical properties of Ti-V-Al-Cu shape memory alloy by tailoring Cu content [J]. Mater. Sci. Eng., 2020, 771A: 138641
[17] Sun B, Meng X L, Gao Z Y, et al. Effect of annealing temperature on shape memory effect of cold-rolled Ti-16 at.%Nb alloy [J]. J. Alloys Compd., 2017, 715: 16
doi: 10.1016/j.jallcom.2017.04.275
[18] Sun B, Meng X L, Gao Z Y, et al. Study on the deformation mechanism of the martensitic Ti-16Nb high temperature shape memory alloy [J]. Mater. Sci. Eng., 2019, 742A: 590
[19] Chai Y W, Kim H Y, Hosoda H, et al. Self-accommodation in Ti-Nb shape memory alloys [J]. Acta Mater., 2009, 57: 4054
doi: 10.1016/j.actamat.2009.04.051
[20] Inamura T, Yamamoto Y, Hosoda H, et al. Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti-Nb-Al shape memory alloy [J]. Acta Mater., 2010, 58: 2535
doi: 10.1016/j.actamat.2009.12.040
[21] Cui Y, Li Y, Luo K, et al. Microstructure and shape memory effect of Ti-20Zr-10Nb alloy [J]. Mater. Sci. Eng., 2010, 527A: 652
[22] Takahashi E, Sakurai T, Watanabe S, et al. Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys [J]. Mater. Trans., 2002, 43: 2978
doi: 10.2320/matertrans.43.2978
[23] Ping D H, Mitarai Y, Yin F X. Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy [J]. Scr. Mater., 2005, 52: 1287
doi: 10.1016/j.scriptamat.2005.02.029
[24] Karimzadeh M, Aboutalebi M R, Salehi M T, et al. Effects of thermomechanical treatments on the martensitic transformation and critical stress of Ti-50.2at. % Ni alloy [J]. J. Alloys Compd., 2015, 637: 171
doi: 10.1016/j.jallcom.2015.02.195
[25] Khelfaoui F, Guénin G. Influence of the recovery and recrystallization processes on the martensitic transformation of cold worked equiatomic Ti-Ni alloy [J]. Mater. Sci. Eng., 2003, 355A: 292
[26] Sharifi E M, Karimzadeh F, Kermanpur A. The effect of cold rolling and annealing on microstructure and tensile properties of the nanostructured Ni50Ti50 shape memory alloy [J]. Mater. Sci. Eng., 2014, 607A: 33
[27] Mahmud A S, Wu Z G, Yang H, et al. Effect of cold work and partial annealing on thermomechanical behaviour of Ti-50.5at%Ni [J]. Shap. Mem. Superelasticity, 2017, 3: 57
doi: 10.1007/s40830-017-0103-6
[28] Zheng X H, Sui J H, Zhang X, et al. Thermal stability and high-temperature shape memory effect of Ti-Ta-Zr alloy [J]. Scr. Mater., 2013, 68: 1008
doi: 10.1016/j.scriptamat.2013.03.008
[29] Xiong C Y, Xue P F, Sun B H, et al. Effect of annealing temperature on the microstructure and superelasticity of Ti-19Zr-10Nb-1Fe alloy [J]. Mater. Sci. Eng., 2017, 688A: 464
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.