Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (3): 209-217    DOI: 10.11901/1005.3093.2018.280
  本期目录 | 过刊浏览 |
乙酯官能化聚酰亚胺的热致重排及其对CO2的吸附性能
鲁云华1(),肖国勇1,李琳2,董岩1,迟海军1,胡知之1,王同华2()
1. 辽宁科技大学化学工程学院 鞍山 114051
2. 大连理工大学化工学院 精细化工国家重点实验室 大连 116024
Thermal Rearrangement of Acetate-functionalized Polyimides and Adsorption Properties for CO2
Yunhua LU1(),Guoyong XIAO1,Lin LI2,Yan DONG1,Haijun CHI1,Zhizhi HU1,Tonghua WANG2()
1. School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
2. State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

鲁云华,肖国勇,李琳,董岩,迟海军,胡知之,王同华. 乙酯官能化聚酰亚胺的热致重排及其对CO2的吸附性能[J]. 材料研究学报, 2019, 33(3): 209-217.
Yunhua LU, Guoyong XIAO, Lin LI, Yan DONG, Haijun CHI, Zhizhi HU, Tonghua WANG. Thermal Rearrangement of Acetate-functionalized Polyimides and Adsorption Properties for CO2[J]. Chinese Journal of Materials Research, 2019, 33(3): 209-217.

全文: PDF(4983 KB)   HTML
摘要: 

先使两种含有邻羟基和大体积结构的二胺单体3,3’-二氨基-4,4’-二羟基四苯基甲烷(DDTPM)和9,9-双(3-氨基-4-羟基苯基)芴(BAHPF)分别与六氟二酐(6FDA)进行低温溶液缩聚反应并经化学酰亚胺化得到两种乙酯官能化的聚酰亚胺(PI),然后在425℃氮气氛围中进行热处理制备出相应的热致重排(TR)聚合物。使用红外光谱仪(FTIR)、核磁共振波谱仪(NMR)、热重分析仪(TGA)、差示扫描量热仪(DSC)、X-射线光电子能谱(XPS)、X-射线衍射仪(XRD)以及Autosorb iQ2等手段表征两种PI和TR聚合物的结构和性能,研究了乙酯官能化聚酰亚胺的热致重排及其CO2吸附性能。结果表明:PI(DDTPM-6FDA)和PI(BAHPF-6FDA)都发生了部分热致重排反应,且含有两个苯基的PI比含有芴基的PI具有更宽的重排温度范围。它们均具有较高的玻璃化转变温度(Tg)和较宽的晶面间距。TR(DDTPM-6FDA)和TR(BAHPF-6FDA)的比表面积分别为198和582 m2/g,孔径为0.42和0.44 nm,均为微孔聚合物材料,后者对CO2的吸附能力更强。

关键词 有机高分子材料聚酰亚胺热致重排聚合物乙酯官能化CO2吸附    
Abstract

Two kinds of diamines containing ortho-hydroxyl groups and bulky moiety, 3,3'-diamino-4,4'-dihydroxytetraphenylmethane (DDTPM) and 9,9-bis (3-amino-4-hydroxyphenyl) fluorene (BAHPF) were polymerized respectively with aromatic dianhydride 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) via a low-temperature solution polymerization, and next, two acetate-functionalized polyimides (PI) were prepared via chemical imidization, and thirdly, which were further thermally treated at 425oC in N2 atmosphere to obtain the thermally rearranged polymers. Then, the structure and property of the PIs and TR polymers were characterized by means of Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), X-ray photoelectric spectroscopy (XPS), X-ray diffraction(XRD) and gas adsorption isotherms etc. The results show that the thermal rearrangement (TR) occured partially for both of the PI(DDTPM-6FDA) and PI(BAHPF-6FDA), and the PI containing two phenyl groups show a range of thermal rearrangement temperature broader than the PI containing fluorene moieties. They show high glass transitionn temperatures (Tg) and larger interplanar crystal spacing. After the thermal treatment at 425oC, the specific surface area of TR(DDTPM-6FDA) and TR(BAHPF-6FDA) are 198 and 582 m2/g, and their pore diameters are 0.42 and 0.44 nm, respectively. They are belong to microporous materials, and the adsorption capacity for CO2 of TR(BAHPF-6FDA) is higher than that of TR(DDTPM-6FDA).

Key wordsorganic polymer materials    polyimides    thermally rearranged polymers    acetate-func-tional    CO2 adsorption
收稿日期: 2018-04-18     
ZTFLH:  TB 324  
基金资助:国家自然科学基金(21878033);国家自然科学基金(21506020);国家自然科学基金(21406102);国家自然科学基金(21676044);辽宁省自然科学基金(20180550439);辽宁省教育厅优秀人才项目(LJQ2015053)
作者简介: 鲁云华,女,1977年生,副教授
图1  3,3’-二氨基-4,4’-二羟基四苯基甲烷的合成路线
图2  热致重排聚合物的制备过程
图3  二羟基化合物、二硝基化合物和二胺的红外光谱
图4  二羟基化合物、二硝基化合物和二胺的核磁谱
图5  乙酯官能化聚酰亚胺及其热致重排聚合物的红外光谱
图6  乙酯官能化的聚酰亚胺的热重分析曲线
图7  两种乙酯官能化的聚酰亚胺的DSC曲线
图8  热致重排聚合物的XPS分析
图9  乙酯官能化聚酰亚胺及其热致重排聚合物的XRD曲线
图10  热致重排聚合物的SEM照片
SamplesSolvents
NMPDMFDMAcDMSOTHFAcetone
PI(DDTPM-6FDA)++++--
TR(DDTPM-6FDA)------
PI(BAHPF-6FDA)++++--
TR(BAHPF-6FDA)------
表1  乙酯官能化的聚酰亚胺及其热致重排聚合物的溶解性
图11  热致重排聚合物的N2吸附-脱附等温线
图12  热致重排聚合物的CO2吸附等温线
[1] LuoY, LiB, WangW, et al. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials [J]. Adv. Mater., 2012, 24(42): 5703
[2] MckeownN B, BuddP M, BookD. Microporous polymers as potential hydrogen storage materials [J]. Macromol. Rapid. Comm., 2007, 28(9): 995
[3] KimS, LeeY M. Rigid and microporous polymers for gas separation membranes [J]. Prog. Polym. Sci., 2015, 43: 1
[4] KouJ, SunL. Fabrication of nitrogen-doped porous carbons for highly efficient CO2 capture: rational choice of a polymer precursor [J]. J. Mater. Chem. A, 2016, 4: 17299
[5] LiawD J, WangK L, HuangY C, et al. Advanced polyimide materials: synthesis, physical properties and applications [J]. Prog. Polym. Sci., 2012, 37: 907
[6] WeberJ, SuQ, AntoniettiM, et al. Exploring polymers of intrinsic microporosity-microporous, soluble polyamide and polyimide [J]. Macromol. Rapid. Comm., 2007, 28: 1871
[7] SwaidanR J, GhanemB, SwaidanR, et al. Pure- and mixed-gas propylene/propane permeation properties of spiro- and triptycene-based microporous polyimides [J]. J. Membr. Sci., 2015, 492: 116
[8] MaX, SalinasO, LitwillerE, et al. Novel spirobifluorene- and dibromospirobifluorene-based polyimides of intrinsic microporosity for gas separation applications [J]. Macromolecules, 2013, 46: 9618
[9] YanJ, ZhangB, and WangZ G. Ultramicroporous carbons derived from semi-cycloaliphatic polyimide with outstanding adsorption properties for H2, CO2, and organic vapors [J]. J. Phys. Chem. C, 2017, 121(41): 22753
[10] LiG Y, ZhangB, YanJ, et al. Microporous polyimides with functional groups for the adsorption of carbon dioxide and organic vapors [J]. J. Mater. Chem. A, 2016, 4, 11453
[11] ParkH B, JungC H, LeeY M, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions [J]. Science, 2007, 318: 254
[12] SwaidaR J, MaX, PinnauI. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation [J]. J. Membr. Sci., 2016, 520: 983
[13] XuY M, LeN L, ZuoJ, et al. Aromatic polyimide and crosslinked thermally rearranged poly(benzoxazole-co-imide) membranes for isopropanol dehydration via pervaporation [J]. J. Membr. Sci., 2016, 499: 317
[14] KimS, LeeY M. Rigid and microporous polymers for gas separation membranes [J]. Prog. Polym. Sci., 2015, 43: 1
[15] LuoS, LiuJ, LinH, et al. Preparation and gas transport properties of triptycene-containing polybenzoxazole (PBO)-based polymers derived from thermal rearrangement (TR) and thermal cyclodehydration (TC) processes [J]. J. Mater. Chem. A, 2016, 4: 17050
[16] LiuW, XieW. Acetate-functional thermally rearranged polyimides based on 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane and various dianhydrides for gas separations [J]. Ind. Eng. Chem. Res., 2013, 53(2): 871
[17] OngY K, WangH, ChungT S. A prospective study on the application of thermally rearranged acetate-containing polyimide membranes in dehydration of biofuels via pervaporation [J]. Chem. Eng. Sci., 2012, 79(37): 41
[18] BibianaC G, JoséG C, AntonioH, et al. Gas separation membranes made through thermal rearrangement of ortho-methoxypolyimides [J]. RSC Adv., 2015, 5: 102261
[19] LuY H, HaoJ C, LiL, et al. Preparation and gas transport properties of thermally induced rigid membranes of copolyimide containing cardo moieties [J]. React. Funct. Polym., 2017, 119: 134
[20] LuY H, HaoJ C, LiL, et al. Synthesis and gas separation properties of thermally induced rigid membranes [J]. Acta Polym. Sin., 2016, 8: 1145
[20] (鲁云华, 郝继璨, 李 琳等. 热致刚性膜材料的合成与气体分离性能研究 [J]. 高分子学报, 2016, 8: 1145)
[21] ParkH B, HanS H, JungC H, et al. Thermally rearranged (TR) polymer membranes for CO2 separation [J]. J. Membr. Sci., 2010, 359: 11
[22] LiG Y. Construction of microporous polymers and their adsorption properties of CO2 gas and organic vapors [D]. Dalian University of Technology, 2014
[22] (李桂洋. 微孔聚合物的构建及其二氧化碳与有机蒸气吸附性能研究 [D]. 大连理工大学, 2014)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[3] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[4] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[15] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.