Please wait a minute...
金属学报  2023, Vol. 59 Issue (4): 478-488    DOI: 10.11900/0412.1961.2022.00566
  综述 本期目录 | 过刊浏览 |
3D打印医用钛合金多孔材料力学性能研究进展
李述军(), 侯文韬, 郝玉琳, 杨锐()
中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique
LI Shujun(), HOU Wentao, HAO Yulin, YANG Rui()
Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
Shujun LI, Wentao HOU, Yulin HAO, Rui YANG. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. Acta Metall Sin, 2023, 59(4): 478-488.

全文: PDF(3411 KB)   HTML
摘要: 

钛合金多孔材料具有与人体骨匹配的弹性模量,可有效解决金属植入物与人体骨弹性错配;其内部存在的大量孔隙有利于周围细胞的长入和新骨的生长,从而促进骨组织形成。近年来,增材制造(3D打印)技术被用于钛合金多孔材料制备,该方法可以精确控制孔隙参数,并且克服了因金属高熔点造成的制备困难。本文综述了作者团队在3D打印医用Ti-6Al-4V、纯Ti以及低模量钛合金多孔材料组织及力学性能的研究结果。对于Ti-6Al-4V两相合金,其疲劳性能受多孔结构设计和多种后处理的影响。纯Ti多孔材料较Ti-6Al-4V更优的疲劳寿命源于其更好的塑性和形变孪晶的应变硬化效应。低模量Ti2448合金的优异疲劳寿命则源于其超弹性提高裂纹萌生寿命,高韧性提高裂纹扩展寿命。最后展望了复杂生理环境腐蚀疲劳性能、多孔材料表面生物活化处理和新型医用金属体系多孔材料等发展方向。

关键词 医用钛合金多孔材料增材制造组织力学性能    
Abstract

Porous titanium alloys have been used for biomedical implants owing to their low-modulus matching with that of human bones and interconnecting pores with suitable size, which facilitates bone in-growth and satisfies the requirement of a successful implant. Recently, additive manufacturing (3D printing) has emerged as an excellent technology for manufacturing porous implants with accurate designed pore parameters and overcoming processing difficulties caused by high melting temperatures of metals. In this paper, the microstructure and mechanical properties of porous Ti-6Al-4V, commercial pure titanium (CP-Ti), and low-modulus Ti2448 alloys produced by 3D printing, obtained mainly by the authors' group, are reviewed. For Ti-6Al-4V, its fatigue properties are affected by the type of mesh struts and post processing. The better fatigue life of CP-Ti compared to that of Ti-6Al-4V derives from its superior ductility and the strain hardening effect caused by deformation twins. The excellent fatigue life of the low-modulus Ti2448 alloy results from its superelasticity and the high toughness, which increases the crack nucleation life and fatigue crack propagation life, respectively. Future directions of corrosion-fatigue properties of materials in complex physiological environments, surface biological functionalization, and porous material of new metallic alloy systems are discussed.

Key wordsbiomedical titanium alloy    porous structure    additive manufacturing    microstructure    mechanical property
收稿日期: 2022-11-03     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(51871220);国家自然科学基金项目(U2241245);中国科学院前沿科学重点研究项目(QYZDJ-SSW-JSC031)
通讯作者: 李述军,shjli@imr.ac.cn,主要从事医用钛合金及其增材制造研究;杨 锐,ryang@imr.ac.cn,主要从事先进钛合金及钛基复合材料研究
Corresponding author: LI Shujun, professor, Tel: (024)83978841, E-mail: shjli@imr.ac.cn;YANG Rui, professor, Tel: (024)23971512, E-mail: ryang@imr.ac.cn
作者简介: 李述军,男,1975年生,研究员,博士
图1  Ti-6Al-4V合金多孔材料孔梁的OM像、XRD谱、TEM像及SAED花样[11]
图2  Ti-6Al-4V合金不同单元孔形多孔材料的弹性模量和压缩强度[13]
图3  Ti-6Al-4V合金不同孔形菱形十二面体单元结构多孔材料的应力-应变曲线,Materialize软件设计的菱形十二面体单元模型,及增加孔梁受力的弯曲分量的单元模型[13]
图4  不同密度Ti-6Al-4V合金多孔材料的最大应力-疲劳寿命(S-N)曲线及相对疲劳强度与相对密度的关系[22]
图5  梯度Ti-6Al-4V多孔材料循环变形过程中的应变累积曲线和梯度多孔材料循环变形停止在图5a中不同阶段的X射线三维成像照片[30]
图6  不同退火条件下Ti-6Al-4V多孔材料孔梁的金相组织[21]
图7  选区电子束熔化(SEBM)制备Ti-6Al-4V合金多孔材料原始态和退火态的应力-应变曲线和S-N曲线[21]
图8  直径为1.2 mm的3D打印纯Ti和Ti-6Al-4V合金圆棒的拉伸曲线,纯Ti和Ti-6Al-4V合金多孔材料压缩曲线及S-N曲线[36]
图9  SEBM制备Ti2448合金多孔材料的宏观形貌、菱形十二面体单元、孔梁的表面形貌、基体组织形貌和XRD谱[42]
图10  不同孔隙率SEBM制备Ti2448合金多孔材料的典型压缩应力-应变曲线、弹性模量和超弹性[42]
图11  SEBM制备Ti2448和Ti-6Al-4V合金多孔材料的S-N曲线、归一化S-N曲线以及弹性模量与疲劳强度的关系[42]
1 Gibson L J. Cellular solids [J]. MRS Bull., 2003, 28: 270
doi: 10.1557/mrs2003.79
2 Head W C, Bauk D J, Emerson Jr R H. Titanium as the material of choice for cementless femoral components in total hip arthroplasty [J]. Clin. Orthop. Relat. Res., 1995, (311): 85
3 Krishna B V, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants [J]. Acta Biomater., 2007, 3: 997
pmid: 17532277
4 Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications [J]. J. Mech. Behav. Biomed. Mater., 2008, 1: 30
doi: 10.1016/j.jmbbm.2007.07.001 pmid: 19627769
5 Nune K C, Misra R D K, Gaytan S M, et al. Biological response of next-generation of 3D Ti-6Al-4V biomedical devices using additive manufacturing of cellular and functional mesh structures [J]. J. Biomater. Tiss. Eng., 2014, 4: 755
6 Banhart J. Manufacture, characterisation and application of cellular metals and metal foams [J]. Prog. Mater. Sci., 2001, 46: 559
doi: 10.1016/S0079-6425(00)00002-5
7 Zhang L C, Liu Y J, Li S J, et al. Additive manufacturing of titanium alloys by electron beam melting: A review [J]. Adv. Eng. Mater., 2018, 20: 1700842
doi: 10.1002/adem.v20.5
8 Murr L E. Frontiers of 3D printing/additive manufacturing: From human organs to aircraft fabrication [J]. J. Mater. Sci. Technol., 2016, 32: 987
doi: 10.1016/j.jmst.2016.08.011
9 Narra S P, Cunningham R, Beuth J, et al. Location specific solidification microstructure control in electron beam melting of Ti-6Al-4V [J]. Addit. Manufact., 2018, 19: 160
10 Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390
doi: 10.1016/j.actamat.2016.12.027
11 Cheng X Y, Li S J, Murr L E, et al. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting [J]. J. Mech. Behav. Biomed. Mater., 2012, 16: 153
doi: 10.1016/j.jmbbm.2012.10.005 pmid: 23182384
12 Murr L E, Gaytan S M, Medina F, et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays [J]. Philos. Trans. Roy. Soc., 2010, 368A: 1999
13 Li S J, Xu Q S, Wang Z, et al. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method [J]. Acta Biomater., 2014, 10: 4537
doi: 10.1016/j.actbio.2014.06.010 pmid: 24969664
14 Murr L E, Amato K N, Li S J, et al. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting [J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 1396
doi: 10.1016/j.jmbbm.2011.05.010 pmid: 21783150
15 Hernández-Nava E, Smith C J, Derguti F, et al. The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing [J]. Acta Mater., 2015, 85: 387
doi: 10.1016/j.actamat.2014.10.058
16 Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM) [J]. J. Mech. Behav. Biomed. Mater., 2010, 3: 249
doi: 10.1016/j.jmbbm.2009.10.006 pmid: 20142109
17 Evans A G, Hutchinson J W, Fleck N A, et al. The topological design of multifunctional cellular metals [J]. Prog. Mater. Sci., 2001, 46: 309
doi: 10.1016/S0079-6425(00)00016-5
18 Hollister S J. Porous scaffold design for tissue engineering [J]. Nat. Mater., 2005, 4: 518
doi: 10.1038/nmat1421 pmid: 16003400
19 Li S J, Zhao S, Hou W T, et al. Functionally graded Ti-6Al-4V meshes with high strength and energy absorption [J]. Adv. Eng. Mater., 2016, 18: 34
doi: 10.1002/adem.v18.1
20 Zhang S Z, Li C, Hou W T, et al. Longitudinal compression behavior of functionally graded Ti-6Al-4V meshes [J]. J. Mater. Sci. Technol., 2016, 32: 1098
doi: 10.1016/j.jmst.2016.02.008
21 Yuan W, Hou W T, Li S J, et al. Heat treatment enhancing the compressive fatigue properties of open-cellular Ti-6Al-4V alloy prototypes fabricated by electron beam melting [J]. J. Mater. Sci. Technol., 2018, 34: 1127
doi: 10.1016/j.jmst.2017.12.003
22 Li S J, Murr L E, Cheng X Y, et al. Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting [J]. Acta Mater., 2012, 60: 793
doi: 10.1016/j.actamat.2011.10.051
23 Gibson L J, Ashby M F. Cellular Solids: Structure and Properties [M]. 2nd Ed., New York: Cambridge University Press, 1997: 453
24 Hedayati R, Hosseini-Toudeshky H, Sadighi M, et al. Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials [J]. Int. J. Fatigue, 2016, 84: 67
doi: 10.1016/j.ijfatigue.2015.11.017
25 Li K, Gao X L, Subhash G. Effects of cell shape and cell wall thickness variations on the elastic properties of two-dimensional cellular solids [J]. Int. J. Solids Struct., 2005, 42: 1777
doi: 10.1016/j.ijsolstr.2004.08.005
26 Zhao S, Li S J, Hou W T, et al. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting [J]. J. Mech. Behav. Biomed. Mater., 2016, 59: 251
doi: S1751-6161(16)00038-2 pmid: 26878293
27 Zargarian A, Esfahanian M, Kadkhodapour J, et al. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures [J]. Mater. Sci. Eng., 2016, C60: 339
28 Yavari S A, Ahmadi S M, Wauthle R, et al. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials [J]. J. Mech. Behav. Biomed. Mater., 2015, 43: 91
doi: 10.1016/j.jmbbm.2014.12.015 pmid: 25579495
29 Ahmadi S M, Hedayati R, Li Y, et al. Fatigue performance of additively manufactured meta-biomaterials: The effects of topology and material type [J]. Acta Biomater., 2018, 65: 292
doi: S1742-7061(17)30698-0 pmid: 29127065
30 Zhao S, Li S J, Wang S G, et al. Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting [J]. Acta Mater., 2018, 150: 1
doi: 10.1016/j.actamat.2018.02.060
31 Wang Q S, Li S J, Hou W T, et al. Mechanistic understanding of compression-compression fatigue behavior of functionally graded Ti-6Al-4V mesh structure fabricated by electron beam melting [J]. J. Mech. Behav. Biomed. Mater., 2020, 103: 103590
doi: 10.1016/j.jmbbm.2019.103590
32 Dai D H, Gu D D. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres [J]. Appl. Surf. Sci., 2015, 355: 310
doi: 10.1016/j.apsusc.2015.07.044
33 Zhao X L, Li S J, Zhang M, et al. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting [J]. Mater. Des., 2016, 95: 21
doi: 10.1016/j.matdes.2015.12.135
34 Dallago M, Fontanari V, Torresani E, et al. Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2018, 78: 381
doi: S1751-6161(17)30532-5 pmid: 29220822
35 Pyka G, Burakowski A, Kerckhofs G, et al. Surface modification of Ti6Al4V open porous structures produced by additive manufacturing [J]. Adv. Eng. Mater., 2012, 14: 363
doi: 10.1002/adem.201100344
36 Liu Y J, Ren D C, Li S J, et al. Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting [J]. Addit. Manuf., 2020, 32: 101060
37 Hao Y L, Li S J, Sun S Y, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications [J]. Acta Biomater., 2007, 3: 277
pmid: 17234466
38 Wang H L, Hao Y L, He S Y, et al. Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy [J]. Acta Mater., 2017, 135: 330
doi: 10.1016/j.actamat.2017.06.040
39 Wang W J, Gong D L, Wang H L, et al. Spinodal decomposition coupled with a continuous crystal ordering in a titanium alloy [J]. Acta Mater., 2022, 233: 117969
doi: 10.1016/j.actamat.2022.117969
40 Liu Y J, Li S J, Wang H L, et al. Electron beam melted beta-type Ti-24Nb-4Zr-8Sn porous structures with high strength-to-modulus ratio [J]. J. Mater. Sci. Technol., 2016, 32: 505
doi: 10.1016/j.jmst.2016.03.020
41 Liu Y J, Li S J, Wang H L, et al. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting [J]. Acta Mater., 2016, 113: 56
doi: 10.1016/j.actamat.2016.04.029
42 Liu Y J, Wang H L, Li S J, et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting [J]. Acta Mater., 2017, 126: 58
doi: 10.1016/j.actamat.2016.12.052
43 Yang H X, Li S J, Hou W T, et al. Recoverable strain in a new biomedical Ti-24Nb-4Zr-8Sn alloy with cellular structure fabricated by electron beam melting [J]. Mater. Technol., 2020, 35: 881
doi: 10.1080/10667857.2019.1709287
44 Bai Y, Gai X, Li S J, et al. Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline [J]. Corros. Sci., 2017, 123: 289
doi: 10.1016/j.corsci.2017.05.003
45 Gai X, Liu R, Bai Y, et al. Electrochemical behavior of open-cellular structured Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid: The significance of pore characteristics [J]. J. Mater. Sci. Technol., 2022, 97: 272
doi: 10.1016/j.jmst.2021.05.024
46 Gai X, Bai Y, Li S J, et al. In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid [J]. Acta Biomater., 2020, 106: 387
doi: S1742-7061(20)30086-6 pmid: 32058079
47 Gai X, Bai Y, Li S J, et al. In-situ monitoring of the electrochemical corrosion behavior in fluoride environment of cellular structured Ti6Al4V alloy fabricated by electron beam melting [J]. Corros. Sci., 2021, 181: 109258
doi: 10.1016/j.corsci.2021.109258
48 Cao H J, Feng L F, Wu Z X, et al. Effect of low-intensity pulsed ultrasound on the biological behavior of osteoblasts on porous titanium alloy scaffolds: An in vitro and in vivo study [J]. Mater. Sci. Eng., 2017, C80: 7
49 Nune K C, Kumar A, Misra R D K, et al. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing [J]. Colloids Surf., 2017, 150B: 78
50 Nune K C, Misra R D K, Li S J, et al. The functional response of bioactive titania-modified three-dimensional Ti-6Al-4V mesh structure toward providing a favorable pathway for intercellular communication and osteoincorporation [J]. J. Biomed. Mater. Res., 2016, 104A: 2488
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[10] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[12] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[13] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[14] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[15] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.