Please wait a minute...
金属学报  2023, Vol. 59 Issue (2): 226-236    DOI: 10.11900/0412.1961.2021.00577
  研究论文 本期目录 | 过刊浏览 |
激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能
王虎1,2, 赵琳1(), 彭云1(), 蔡啸涛1, 田志凌1
1.钢铁研究总院 焊接研究所 北京 100081
2.北华航天工业学院 材料工程学院 廊坊 065000
Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition
WANG Hu1,2, ZHAO Lin1(), PENG Yun1(), CAI Xiaotao1, TIAN Zhiling1
1.Welding Research Institute, Central Iron & Steel Research Institute, Beijing 100081, China
2.College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
引用本文:

王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
Hu WANG, Lin ZHAO, Yun PENG, Xiaotao CAI, Zhiling TIAN. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. Acta Metall Sin, 2023, 59(2): 226-236.

全文: PDF(4256 KB)   HTML
摘要: 

采用激光熔化沉积在TC4合金表面制备出不同TiB2含量(0、10%、20%、30%,质量分数)的TiAl基合金涂层,利用XRD、OM、SEM、显微硬度计、压痕法(断裂韧性)、磨损试验机以及激光共聚焦显微镜等,系统研究了TiB2含量对涂层微观组织与力学性能的影响。结果表明,涂层组织由底部沿厚度方向依次为平面晶、柱状晶和等轴晶,随着TiB2含量增加,柱状晶高度逐渐降低。TiB2/TiAl复合涂层由TiAl合金基体相(γ + α2)以及TiB2增强相组成,直接添加的TiB2颗粒大多没有熔化,但直接添加的TiB2颗粒外层与TiAl合金熔体发生溶解反应后原位析出初生TiB2和次生TiB2,初生TiB2呈块状,次生TiB2呈短棒状和条带状。随着TiB2含量由0增加至10%,涂层基体组织明显细化,但继续增加TiB2含量(20%、30%)并未产生进一步的细化作用。随着TiB2含量由0增加至30%,涂层的表面硬度由530.5 HV增加至738.4 HV,断裂韧性由7.75 MPa·m1/2降低至3.17 MPa·m1/2,磨损率由3.98 mg/mm2减少至0.42 mg/mm2,并且磨损面的磨损程度及其粗糙度也随之降低。未添加TiB2时,涂层的磨损机制以显微切削为主,多次塑性变形为辅;TiB2含量为10%时,涂层的磨损机制以显微切削为主,微观断裂为辅;随着TiB2含量增加,磨损机制逐渐转向微观断裂;TiB2含量为30%时,涂层的磨损机制以微观断裂为主,显微切削为辅。

关键词 激光熔化沉积TiAl基合金TiB2微观组织力学性能    
Abstract

TiAl-based alloy coating produced by laser melting deposition exhibits excellent properties of high temperature and corrosion resistance and has a wide application potential across many fields. However, the wear resistance of the coating is poor, which limits its long-term usage in harsh and complex working environments. In this study, TiB2 reinforced TiAl-based alloy composite coatings are prepared by laser melting deposition to improve their wear resistance, and a theoretical reference for further exploring the applications of TiAl-based alloy composites in surface engineering is presented. TiAl-based alloy coatings with different TiB2 contents (0, 10%, 20%, 30%, mass fraction) were prepared on the surface of TC4 alloy using the laser melting deposition process. The effects of TiB2 content on the microstructure and mechanical properties of the coatings were systematically studied using XRD, OM, SEM, microhardness tester, indentation method, wear tester, and laser confocal microscope. Planar, columnar, and equiaxed crystal distributions were observed along the thickness direction from the bottom. With an increase in TiB2 content, the height of columnar crystal gradually decreased. TiB2/TiAl composite coatings are composed of a TiAl alloy matrix phase (γ + α2) and a TiB2 enhanced phase. Most of the directly added TiB2 particles do not melt, but the outer layer of the directly added TiB2 particles dissolves within the molten TiAl alloy, following which primary and secondary TiB2 are precipitated in situ. The primary TiB2 has a particle form and the secondary TiB2 has a needle or flake form. With the increase of TiB2 content from 0 to 10%, the matrix of the coating is noticeably refined, but an increase in TiB2 content (20% and 30%) do not produce further refinement. With the increase of TiB2 content from 0 to 30%, the surface hardness of the coating increases from 530.5 HV to 738.4 HV, the fracture toughness decreases from 7.75 MPa·m1/2 to 3.17 MPa·m1/2, the wear rate decreases from 3.98 mg/mm2 to 0.42 mg/mm2, and the wear degree and roughness of the wear surface also decrease. Furthermore, the wear mechanism of the coating without TiB2 is mainly microscopic cutting, supplemented by multiple plastic deformations. When the mass fraction of TiB2 is 10%, the wear mechanism of the coating is mainly microscopic cutting, supplemented by microscopic fracture. As the TiB2 content increases, the wear mechanism gradually turns to microscopic fracture. When the mass fraction of TiB2 is 30%, the wear mechanism of the coating is mainly microscopic fracture, supplemented by microscopic cutting.

Key wordslaser melting deposition    TiAl-based alloy    TiB2    microstructure    mechanical property
收稿日期: 2021-12-22     
ZTFLH:  TG174.4  
基金资助:国家重点研发计划项目(2020YFE0200900)
作者简介: 王 虎,男,1986年生,博士生
图1  TiAl合金粉末和TiB2颗粒的SEM像
图2  不同TiB2含量涂层的XRD谱
图3  TiAl合金涂层中部的显微组织
图4  不同TiB2含量涂层截面中部的背散射电子像
Mass fraction of
TiB2 / %
PositionTiB*
10A20.8279.18
B18.7481.26
C15.7684.24
D14.9985.01
20A15.8784.13
B17.7582.25
C16.8483.16
D15.8184.19
30A14.7385.27
B15.4484.56
C17.6982.31
D16.1483.86
表1  图4复合涂层中第二相的EDS结果 (atomic fraction / %)
图5  不同TiB2含量涂层界面附近的OM像
图6  不同TiB2含量涂层截面的显微硬度
图7  不同TiB2含量涂层的压痕形貌
Mass fraction of TiB2 / %Average crack length / mmFracture toughness / (MPa·m1/2)
00.1957.75
100.5455.02
201.2043.49
301.6723.17
表2  不同TiB2含量涂层的断裂韧性(压痕法)
图8  不同TiB2含量涂层的磨损率
图9  不同TiB2含量涂层的磨损形貌
图10  磨粒磨损条件下产生的剥落坑的高倍形貌
图11  不同TiB2含量涂层磨损表面的粗糙度
图12  不同TiB2含量涂层磨损表面的3D形貌
1 Kesler M S, Goyel S, Ebrahimi F, et al. Effect of microstructural parameters on the mechanical behavior of TiAlNb(Cr, Mo) alloys with γ + σ microstructure at ambient temperature[J]. J. Alloys Compd., 2017, 695: 2672
doi: 10.1016/j.jallcom.2016.11.181
2 Zhou H T, Kong F T, Wang X P, et al. High strength in high Nb containing TiAl alloy sheet with fine duplex microstructure produced by hot pack rolling[J]. J. Alloys Compd., 2017, 695: 3495
doi: 10.1016/j.jallcom.2016.12.005
3 Yue H Y, Chen Y Y, Wang X P, et al. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting[J]. J. Alloys Compd., 2018, 750: 617
doi: 10.1016/j.jallcom.2018.03.343
4 Yang J, Xiao S, Zhang Q K, et al. In-situ synthesis of Ti-Al intermetallic compounds coating on Ti alloy by magnetron sputtering deposition followed by vacuum annealing[J]. Vacuum, 2020, 172: 109060
doi: 10.1016/j.vacuum.2019.109060
5 Kurzina I A, Kozlov E V, Sharkeev Y P, et al. Influence of ion implantation on nanoscale intermetallic-phase formation in Ti-Al, Ni-Al and Ni-Ti systems[J]. Surf. Coat. Technol., 2007, 201: 8463
doi: 10.1016/j.surfcoat.2006.02.062
6 Zhao Y C, Liu K. Effect of CeO2 and Y2O3 on tribological properties of Ti-Al/WC cermet composite coatings[J]. Lubr. Eng., 2019, 44(7): 78
6 赵运才, 刘 克. CeO2和Y2O3对Ti-Al/WC金属陶瓷复合涂层摩擦学性能的影响[J]. 润滑与密封, 2019, 44(7): 78
7 Burkov A A, Chigrin P G. Synthesis of Ti-Al intermetallic coatings via electrospark deposition in a mixture of Ti and Al granules technique[J]. Surf. Coat. Technol., 2020, 387: 125550.
doi: 10.1016/j.surfcoat.2020.125550
8 Chang Z X, Wang W X, Ge Y Q, et al. Microstructure and mechanical properties of Ni-Cr-Si-B-Fe composite coating fabricated through laser additive manufacturing[J]. J. Alloys Compd., 2018, 747: 401
doi: 10.1016/j.jallcom.2018.02.296
9 Carrullo J C Z, Falcón J C P, Borrás V A. Influence of process parameters and initial microstructure on the oxidation resistance of Ti48Al2Cr2Nb coating obtained by laser metal deposition[J]. Surf. Coat. Technol., 2019, 358: 114
doi: 10.1016/j.surfcoat.2018.11.015
10 Cheng J, Zhu S Y, Qiao Z H, et al. Recent advances of the tribology research of TiAl based intermetallics[J]. Tribology, 2015, 35: 342
10 程 军, 朱圣宇, 乔竹辉 等. TiAl基金属间化合物的摩擦学研究进展[J]. 摩擦学学报, 2015, 35: 342
11 He X, Song R G, Kong D J. Effects of TiC on the microstructure and properties of TiC/TiAl composite coating prepared by laser cladding[J]. Opt. Laser Technol., 2019, 112: 339
doi: 10.1016/j.optlastec.2018.11.037
12 Cheng J, Yu Y, Fu L C, et al. Effect of TiB2 on dry-sliding tribological properties of TiAl intermetallics[J]. Tribol. Int., 2013, 62: 91
doi: 10.1016/j.triboint.2013.02.006
13 Schubert W D, Neumeister H, Kinger G, et al. Hardness to toughness relationship of fine-grained WC-Co hardmetals[J]. Int. J. Refract. Met. Hard Mater., 1998, 16: 133
doi: 10.1016/S0263-4368(98)00028-6
14 Witusiewicz V T, Bondar A A, Hecht U, et al. The Al-B-Nb-Ti system: V. Thermodynamic description of the ternary system Al-B-Ti[J]. J. Alloys Compd., 2009, 474: 86
doi: 10.1016/j.jallcom.2008.06.128
15 Larson D J, Liu C T, Miller M K. Boron solubility and boride compositions in α2 + γ titanium aluminides[J]. Intermetallics, 1997, 5: 411
doi: 10.1016/S0966-9795(97)00016-2
16 Hyman M E, McCullough C, Levi C G, et al. Evolution of boride morphologies in TiAl-B alloys[J]. Metall. Trans., 1991, 22A: 1647
17 Li P T. The growth mechanisms and control of TiB2 and LaB6 in-situ synthesized in Al melts[D]. Jinan: Shandong University, 2013
17 李鹏廷. 铝溶体中原位生成TiB2与LaB6的生长机制及控制[D]. 济南: 山东大学, 2013
18 Witusiewicz V T, Bondar A A, Hecht U, et al. The Al-B-Nb-Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al-Ti[J]. J. Alloys Compd., 2008, 465: 64
doi: 10.1016/j.jallcom.2007.10.061
19 Zhang L, Su Y Q, Yang H M, et al. As-cast structure refinement of Ti-46Al alloy by hafnium and boron additions[J]. China Foundry, 2009, 6: 115
20 Han J C, Xiao S L, Tian J, et al. Grain refinement by trace TiB2 addition in conventional cast TiAl-based alloy[J]. Mater. Charact., 2015, 106: 112
doi: 10.1016/j.matchar.2015.05.020
21 Yang G Y, Liu Y, Wang Y, et al. Effects of trace B and Y elements on microstructures of cast Ti-Al-Nb-W alloy[J]. Chin. J. Nonferrous Met., 2011, 21: 777
21 杨广宇, 刘 咏, 王 岩 等. 微量B和Y对铸造Ti-Al-Nb-W合金显微组织的影响[J]. 中国有色金属学报, 2011, 21: 777
22 Goodarzi D M, Pekkarinen J, Salminen A. Analysis of laser cladding process parameter influence on the clad bead geometry[J]. Weld. World, 2017, 61: 883
doi: 10.1007/s40194-017-0495-0
23 Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing[J]. Sci. Technol. Adv. Mater., 2001, 2: 185
doi: 10.1016/S1468-6996(01)00047-X
24 Rong L, Huang J, Li Z G, et al. Microstructure and property of laser cladding Ni-based alloy coating reinforced by WC particles[J]. China Surf. Eng., 2010, 23(6): 40
24 戎 磊, 黄 坚, 李铸国 等. 激光熔覆WC颗粒增强Ni基合金涂层的组织与性能[J]. 中国表面工程, 2010, 23(6): 40
25 Ritchie R O. The conflicts between strength and toughness[J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115 pmid: 22020005
26 Rabinowicz E, Dunn L A, Russell P G. A study of abrasive wear under three-body conditions[J]. Wear, 1961, 4: 345
doi: 10.1016/0043-1648(61)90002-3
27 Moore M A, King F S. Abrasive wear of brittle solids[J]. Wear, 1980, 60: 123
doi: 10.1016/0043-1648(80)90253-7
28 Lu N. The three-dimension evaluation system establishment and detection method research of casting surface roughness[D]. Harbin: Harbin University of Science and Technology, 2014
28 卢 男. 铸造表面粗糙度三维评价体系建立及检测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2014
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.