Please wait a minute...
金属学报  2021, Vol. 57 Issue (11): 1471-1483    DOI: 10.11900/0412.1961.2021.00371
  综述 本期目录 | 过刊浏览 |
激光增材制造高温合金材料与工艺研究进展
孙晓峰1, 宋巍1,2, 梁静静1(), 李金国1(), 周亦胄1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing
SUN Xiaofeng1, SONG Wei1,2, LIANG Jingjing1(), LI Jinguo1(), ZHOU Yizhou1
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

孙晓峰, 宋巍, 梁静静, 李金国, 周亦胄. 激光增材制造高温合金材料与工艺研究进展[J]. 金属学报, 2021, 57(11): 1471-1483.
Xiaofeng SUN, Wei SONG, Jingjing LIANG, Jinguo LI, Yizhou ZHOU. Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing[J]. Acta Metall Sin, 2021, 57(11): 1471-1483.

全文: PDF(3734 KB)   HTML
摘要: 

概述了激光增材制造技术在高温合金中的进展。介绍了增材制造高温合金的技术特点和应用、微观组织及冶金缺陷的形成机制与种类,并从激光参数以及成分设计2个方面综述了增材制造高温合金的缺陷控制方法,明确了激光工艺参数优化与成分优化的方向。最后,从工艺和材料2个方面对激光增材制造在高温合金中的未来发展趋势与研究方向进行了展望。

关键词 增材制造高温合金微观组织冶金缺陷工艺优化成分优化    
Abstract

The research and development progress of laser additive manufacturing technology in superalloys are summarized in this paper. The technical characteristics and application of additive manufacturing in superalloys, formation mechanism, and the types of microstructure and metallurgical defects are introduced in detail. Moreover, the defect control methods of additive manufacturing of superalloys are summarized from the aspects of laser parameters and composition design, and the direction of laser process parameter optimization and composition optimization is clarified. Finally, the future development trend and research direction of laser additive manufacturing in superalloys are summarized and prospected from the aspects of process optimization and material design.

Key wordsadditive manufacturing    superalloy    microstructure    metallurgical defect    process optimization    composition optimization
收稿日期: 2021-08-31     
ZTFLH:  TG665  
基金资助:国家科技重大专项项目(Y2019-VII-0011-0151);国家自然科学基金项目(51771190)
作者简介: 孙晓峰,男,1964年生,研究员,博士
图1  增材制造示意图[17]
图2  选区激光熔化(SLM)和激光熔化沉积(LMD)技术示意图[21,22]
图3  用增材制造技术制备的高温合金零部件:MGT6100燃气轮机高温合金涡轮静叶[23]、Siemens公司SGT-400燃气轮机涡轮叶片[24]以及GE公司LEAP发动机用增材制造燃油喷嘴[12](a) MGT6100 gas turbine superalloy turbine stator[23](b) Siemens SGT-400 industrial gas turbine blade[24](c) GE's fuel nozzles for LEAP engine additive manufacturing[12]
图4  MTI公司为美国NASA旗下Johnson太空中心生产的Inconel 718部件[25]、SpaceX增材制造制备的猎鹰9号火箭氧化剂阀体[26]、以及AR1火箭发动机主喷油嘴[27]
图5  激光增材制造技术修复的高温合金单晶叶片[31](a) repaired blade (b) EBSD mapping
图6  增材制造高温合金典型的微观组织及演变[34~37](a) columnar dendrite[34](b) characteristics of the molten pool[35](c) schematic diagram of equiaxed crystal growth[36](d) schematic diagram of structure evolution (G—temperature gradient)[37]
图7  典型的增材制造高温合金组织缺陷[34,55](a) solidification crack[34](b) eutectic and liquefaction crack[34](c) solid-state crack[34](d) voids[55]
图8  增材制造高温合金裂纹形成的具体位置[65,66](a) crack on the grain boundary[65] (b) crack at the interdendritic [66] (c) transgranular crack[65]
图9  枝晶间析出相与液态裂纹处元素分布[34,69,72](a) schematic diagram of precipitation phase formation between dendrites[69] (b, c) carbide and eutectic[34] (d-g) element distributions obtained by EPMA of liquation crack[72]
图10  新型高温合金的计算设计空间以及ABD-850AM和CM247LC合金微观组织[34](a, b) strain-age cracking merit index and its relationship to γ' fraction and creep life (d, e) magnitude of freezing range in relation to γ' fraction and creep life, where strain-age cracking and creep merit contours are indicated (c, f) SEM images of as-fabricated microstructures of ABD-850AM and CM247LC, respectively
1 Hu Z Q, Liu L R, Jin T, et al. Development of the Ni-base single crystal superalloys [J]. Aeroengine, 2005, 31(3): 1
1 胡壮麒, 刘丽荣, 金 涛等. 镍基单晶高温合金的发展 [J]. 航空发动机, 2005, 31(3): 1
2 Zhu Z, Basoalto H, Warnken N, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys [J]. Acta Mater., 2012, 60: 4888
3 Das D K, Murphy K S, Ma S W, et al. Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium [J]. Metall. Mater. Trans., 2008, 39A: 1647
4 Mughrabi H, Tetzlaff U. Microstructure and high-temperature strength of monocrystalline nickel-base superalloys [J]. Adv. Eng. Mater., 2000, 2: 319
5 Reed R C. The Superalloys Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
6 Furrer D, Fecht H. Ni-based superalloys for turbine discs [J]. JOM, 1999, 51(1): 14
7 Panwisawas C, Tang T Y, Reed R C. Metal 3D printing as a disruptive technology for superalloys [J]. Nat. Commun., 2020, 11: 2327
8 Thompson S M, Bian L K, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics [J]. Addit. Manuf., 2015, 8: 36
9 Melchels F P W, Domingos M A N, Klein T J, et al. Additive manufacturing of tissues and organs [J]. Prog. Polym. Sci., 2012, 37: 1079
10 Buchbinder D, Schleifenbaum H, Heidrich S, et al. High power selective laser melting (HP SLM) of aluminum parts [J]. Phys. Procedia, 2011, 12: 271
11 Huang S H, Liu P, Mokasdar A, et al. Additive manufacturing and its societal impact: A literature review [J]. Int. J. Adv. Manuf. Technol., 2013, 67: 1191
12 The FAA cleared the first 3D printed part to fly in a commercial jet engine from GE [EB/OL]. (2015-04-14).
13 SuperAdmin. Additive manufacturing & sustainability [EB/OL]. (2020-07-19).
14 Man diesel uses metal AM for serial turbine production [EB/OL]. (2017-04-25).
15 Cham J G, Bailey S A, Clark J E, et al. Fast and robust: Hexapedal robots via shape deposition manufacturing [J]. Int. J. Robot. Res., 2002, 21: 869
16 Wang D, Qian Z Y, Dou W H, et al. Research progress on selective laser melting of nickel based superalloy [J]. Addit. Manuf. Technol., 2018, 61(10): 49
16 王 迪, 钱泽宇, 窦文豪等. 激光选区熔化成形高温镍基合金研究进展 [J]. 增材制造技术, 2018, 61(10): 49
17 Additive manufacturing: Siemens uses innovative technology to produce gas turbines [EB/OL].
18 Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 401
19 Kellner T. Fit to print: New plant will assemble world's first passenger jet engine with 3D printed fuel nozzles, next-gen materials [EB/OL]. (2014-06-23).
20 Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
20 林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
21 Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronaut. Manuf. Technol., 2016, (12): 26
21 杨 强, 鲁中良, 黄福享等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
22 Ge J B, Zhang A F, Li D C, et al. Process research on DZ125L superalloy parts by laser metal direct forming [J]. Chin. J. Lasers, 2011, 38(7): 119
22 葛江波, 张安峰, 李涤尘等. 激光金属直接成形DZ125L高温合金零件工艺的研究 [J]. 中国激光, 2011, 38(7): 119
23 Man diesel uses metal am for serial turbine production [EB/OL].
24 im Durchbruch 3D-Druck / Breakthrough in 3D printing [EB/OL].
25 Messier D. MTI partners with NASA Johnson on 3D printed engine [EB/OL].
26 Rae Botsford End. SpaceX's SuperDraco engine: Abort capability all the way to orbit [EB/OL]. (2015-05-07)[2017-10-30].
27 Clemons R. Identify the best 3D-printing process for your application [EB/OL].
28 Wen S F, Li S, Wei Q S, et al. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts [J]. J. Mater. Process. Technol., 2014, 214: 2660
29 Liu R C, Yang Y Q, Wang D. Research of upper surface roughness of metal parts fabricated by selective laser melting [J]. Laser Technol., 2013, 37: 425
29 刘睿诚, 杨永强, 王 迪. 选区激光熔化成型金属零件上表面粗糙度的研究 [J]. 激光技术, 2013, 37: 425
30 Huang W D, Li Y M, Feng L P, et al. Laser solid forming of metal powder materials [J]. J. Mater. Eng., 2002, (3): 40
30 黄卫东, 李延民, 冯莉萍等. 金属材料激光立体成形技术 [J]. 材料工程, 2002, (3): 40
31 Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing-microstructure maps [J]. Acta Mater., 2001, 49: 1051
32 Ci S W, Liang J J, Li J G, et al. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming [J]. J. Mater. Sci. Technol., 2020, 45: 23
33 Kurz W, Fisher D J. Dendrite growth at the limit of stability: Tip radius and spacing [J]. Acta Mater., 1981, 29: 11
34 Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing [J]. Acta Mater., 2021, 202: 417
35 Li S, Wei Q S, Shi Y S, et al. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2015, 31: 946
36 Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
37 Wang K B, Liu Y X, Sun Z, et al. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing [J]. J. Alloys Compd., 2020, 819: 152936
38 Carter L N, Attallah M M, Reed R C. Laser powder bed fabrication of nickel-base superalloys: Influence of parameters; characterization, quantification and mitigation of cracking [M]. John Wiley & Sons, Inc., 2012: 577
39 Perevoshchikova N, Rigaud J, Sha Y, et al. Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlert’s design [J]. Rapid Prototyp. J., 2017, 23: 881
40 Zhang Y W, Zhang S Q, Wang H M. Microstructure and mechanical properties of directional rapidly solidified Ni-base superalloy Rene95 by laser melting deposition manufacturing [J]. Rare Met. Mater. Eng., 2008, 37: 169
40 张亚玮, 张述泉, 王华明. 激光熔化沉积定向快速凝固高温合金组织及性能 [J]. 稀有金属材料与工程, 2008, 37: 169
41 Liu L R, Jin T, Zhao N R, et al. Effect of carbon addition on the creep properties in a Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2004, A385: 105
42 Dye D, Hunziker O, Reed R C. Numerical analysis of the weldability of superalloys [J]. Acta Mater., 2001, 49: 683
43 Liang Y J, Li J, Li A, et al. Solidification path of single-crystal nickel-base superalloys with minor carbon additions under laser rapid directional solidification conditions [J]. Scr. Mater., 2017, 127: 58
44 Lippold J C. Welding Metallurgy and Weldability [M]. Hoboken: John Wiley & Sons, Inc., 2015: 1
45 Kou S. Solidification and liquation cracking issues in welding [J]. JOM, 2003, 55(6): 37
46 Zhang X Q, Chen H B, Xu L M, et al. Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy [J]. Mater. Des., 2019, 183: 108105
47 Ploshikhin V, Prikhodovsky A, Makhutin M, et al. Mechanical-metallurgical approach to modeling of solidification cracking in welds [A]. Hot Cracking Phenomena in Welds [M]. Berlin, Heidelberg: Springer, 2005: 223
48 Wang H M, Zhang J H, Tang Y J, et al. Rapidly solidified MC carbide morphologies of a laser-glazed single-crystal nickel-base superalloy [J]. Mater. Sci. Eng., 1992, A156: 109
49 Nastac L, Stefanescu D M. Computational modeling of NbC/Laves formation in INCONEL 718 equiaxed castings [J]. Metall. Mater. Trans., 1997, 28A: 1582
50 Egbewande A T, Zhang H R, Sidhu R K, et al. Improvement in laser weldability of INCONEL 738 superalloy through microstructural modification [J]. Metall. Mater. Trans., 2009, 40A: 2694
51 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
52 Collins M G, Lippold J C. An investigation of ductility dip cracking in nickel-based filler materials-part I [J]. Weld J., 2003, 82: 288s
53 Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal: part II-Insight into the mechanism for ductility dip cracking [J]. Mater. Sci. Eng., 2004, A380: 245
54 Tian Y, Tomus D, Rometsch P, et al. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting [J]. Addit. Manuf., 2017, 13: 103
55 Moussaoui K, Rubio W, Mousseigne M, et al. Effects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties [J]. Mater. Sci. Eng., 2018, A735: 182
56 Olakanmi E O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties [J]. J. Mater. Process. Technol., 2013, 213: 1387
57 Bazaz B, Zarei-Hanzaki A, Fatemi-Varzaneh S M. Hardness and microstructure homogeneity of pure copper processed by accumulative back extrusion [J]. Mater. Sci. Eng., 2013, A559: 595
58 Liu Z Y, Li C, Fang X Y, et al. Energy consumption in additive manufacturing of metal parts [J]. Procedia Manuf., 2018, 26: 834
59 Choi J P, Shin G H, Yang S S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting [J]. Powder Technol., 2017, 310: 60
60 Cloots M, Uggowitzer P J, Wegener K, et al. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles [J]. Mater. Des., 2016, 89: 770
61 Basak A, Das S. Additive manufacturing of nickel-base superalloy René N5 through scanning laser epitaxy (SLE)—Material processing, microstructures, and microhardness properties [J]. Adv. Eng. Mater., 2017, 19: 1600690
62 Tang M, Pistorius P C, Beuth J L. Prediction of lack-of-fusion porosity for powder bed fusion [J]. Addit. Manuf., 2017, 14: 39
63 Bajaj P, Wright J, Todd I, et al. Predictive process parameter selection for Selective Laser Melting Manufacturing: Applications to high thermal conductivity alloys [J]. Addit. Manuf., 2019, 27: 246
64 Chen R Z. Development status of single crystal superalloys [J]. J. Mater. Eng., 1995, (8): 3
64 陈荣章. 单晶高温合金发展现状 [J]. 材料工程, 1995, (8): 3
65 Yang J J, Li F Z, Wang Z M, et al. Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication [J]. J. Mater. Process. Technol., 2015, 225: 229
66 Song H Y, Lei J B, Xie J C, et al. Laser melting deposition of K403 superalloy: The influence of processing parameters on the microstructure and wear performance [J]. J. Alloys Compd., 2019, 805: 551
67 Wang N, Mokadem S, Rappaz M, et al. Solidification cracking of superalloy single- and bi-crystals [J]. Acta Mater., 2004, 52: 3173
68 Ojo O A, Richards N L, Chaturvedi M C. Microstructural study of weld fusion zone of TIG welded IN 738LC nickel-based superalloy [J]. Scr. Mater., 2004, 51: 683
69 Liu Z Y, Zhao D D, Wang P, et al. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100: 224
70 Donachie M J, Donachie S J. Superalloys: A Technical Guide [M]. 2nd Ed., Materials Park: ASM International, 2002: 1
71 Vitek J M, Babu S S, David S A, et al. Cracking behavior in nickel-based single crystal superalloy welds [A]. Proceedings of the 7th International conference on Trends in Welding Research [C]. Pine Mountain, May16-20, 2005: 16
72 Zhou Z P, Huang L, Shang Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing [J]. Mater. Des., 2018, 160: 1238
73 Kozeschnik E, Rindler W, Buchmayr B. Scheil-Gulliver simulation with partial redistribution of fast diffusers and simultaneous solid-solid phase transformations [J]. Int. J. Mater. Res., 2007, 98: 826
74 Kou S. A criterion for cracking during solidification [J]. Acta Mater., 2015, 88: 366
75 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci, 2018, 92: 112
76 Harrison N J, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach [J]. Acta Mater., 2015, 94: 59
77 Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
78 Tang L, Liang J J, Cui C Y, et al. Influence of Co content on the microstructures and mechanical properties of a Ni-Co base superalloy made by specific additive manufacturing process [J]. Mater. Sci. Eng., 2020, A786: 139438
79 Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
80 Han Q Q, Gu Y C, Soe S, et al. Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing [J]. Opt. Laser Technol., 2020, 124: 105984
81 Murray S P, Pusch K M, Polonsky A T, et al. A defect-resistant Co-Ni superalloy for 3D printing [J]. Nat. Commun., 2020, 11: 4975
82 Thomas M, Baxter G J, Todd I. Normalised model-based processing diagrams for additive layer manufacture of engineering alloys [J]. Acta Mater., 2016, 108: 26
83 Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
84 Yu J X, Wang C L, Chen Y C, et al. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data [J]. Mater. Des., 2020, 195: 108996
85 Guo J T, Hou J S, Zhou L Z, et al. Prediction and improvement of mechanical properties of corrosion resistant superalloy K44 with adjusting minor additions C, B and Hf [J]. Mater. Trans., 2006, 47: 198
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[7] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[8] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[9] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[10] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[11] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[12] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[13] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[14] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.