Please wait a minute...
金属学报  2022, Vol. 58 Issue (3): 365-374    DOI: 10.11900/0412.1961.2021.00011
  研究论文 本期目录 | 过刊浏览 |
稀土Ce对非调质钢中硫化物特征及微观组织的影响
刘洁1, 徐乐1(), 史超2, 杨少朋1,3, 何肖飞1, 王毛球1, 时捷1
1.钢铁研究总院 特殊钢研究所 北京 100081
2.内蒙古北方重工业集团有限公司 包头 014033
3.马鞍山钢铁股份有限公司技术中心 马鞍山 243000
Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel
LIU Jie1, XU Le1(), SHI Chao2, YANG Shaopeng1,3, HE Xiaofei1, WANG Maoqiu1, SHI Jie1
1.Institute of Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2.Inner Monglia North Heavy Industries Group Corp. Ltd. , Baotou 014033, China
3.The Technology Center of Ma'anshan Iron and Steel Co. Ltd. , Ma'anshan 243000, China
引用本文:

刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
Jie LIU, Le XU, Chao SHI, Shaopeng YANG, Xiaofei HE, Maoqiu WANG, Jie SHI. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. Acta Metall Sin, 2022, 58(3): 365-374.

全文: PDF(3786 KB)   HTML
摘要: 

通过稀土Ce微合金化手段,采用SEM、EDS和ASPEX等手段对不同Ce含量的非调质钢中的夹杂物形貌、数量和尺寸以及实验用钢的显微组织进行了表征,结合Thermo-Calc热力学软件对含Ce硫化物夹杂的形成过程进行了分析,并通过三维原子探针(3DAP)对晶界和相界面处的元素分布进行表征。结果表明,Ce在1800℃与S结合形成Ce3S4夹杂,1480℃转变为Ce2S3夹杂,1480℃以下形成Ce2S3为内核,Ti4C2S2和MnS包覆生长的复合夹杂物;添加Ce元素的实验用钢中90%以上的夹杂物的长径比小于2.5;Ce含量为0.019% (质量分数)时,实验用钢的组织最细,平均晶粒尺寸为4.17 μm。3DAP的结果证明了Ce在晶界和相界处存在明显偏聚,阻碍了C扩散,抑制晶粒长大,另外,高温区形成的细小弥散含Ce夹杂物提供了形核质点,2者共同作用细化了非调质钢的组织。

关键词 稀土Ce非调质钢夹杂物组织细化    
Abstract

A rare-earth Ce microalloyed non-quenching and tempering steel was designed. The morphology, quantity, and size of inclusions in non-quenched and tempered steel with different Ce contents were characterized by SEM, EDS, and ASPEX, as well as the metallography of the test steels. The formation process of Ce sulfide inclusion was analyzed by Thermo-Calc thermodynamic software, and the element distribution at grain boundary and phase interface was characterized by 3DAP. The results showed that Ce combined with S to form Ce3S4 inclusion which then transformed into Ce2S3 inclusion, and finally formed the composite inclusion with Ce2S3 as the core and Ti4C2S2 and MnS as the cladding growth. The aspect ratio of more than 90% inclusions in the steel test with Ce element is less than 2.5; the microstructure of the steel was the smallest with an average grain size of 4.17 μm when the Ce content was 0.019% (mass fraction). The results of 3DAP prove that Ce segregates at the grain boundary and phase boundary, which hinder the diffusion of C and inhibit the growth of grain. In addition, the finely dispersed Ce inclusions as nucleation particles also refine the microstructure of the non-quenched and tempered steel.

Key wordsrare earth Ce    non-quenched and tempered steel    inclusion    grain refinement
收稿日期: 2021-01-06     
ZTFLH:  TG142  
基金资助:国家重点研发计划项目(2016YFB0300103)
作者简介: 刘 洁,女,1994年生,硕士
SteelCSiMnPAltSVTiCeFe
R00.370.481.350.00600.0050.059< 0.0050.063-Bal.
R10.380.461.360.0042< 0.0050.051< 0.0050.0590.010Bal.
R20.380.431.400.0050< 0.0050.063< 0.0050.0590.019Bal.
R30.380.471.390.0045< 0.0050.064< 0.0050.0580.027Bal.
表1  实验用钢的化学成分 (mass fraction / %)
图1  实验用钢中夹杂物的组成(a) R0 (b) R1 (c) R2 (d) R3
图2  钢中复合夹杂物面扫描分析(a) (Ce, Mn)S-Ti4C2S2 (b) (Ce, Mn)S
图3  夹杂物显微组织的OM像(a) R0 (b) R1 (c) R2 (d) R3
图4  钢中夹杂物分布(a) R0 (b) R1 (c) R2 (d) R3
图5  钢中夹杂物的数量和尺寸
图6  钢中夹杂物的长径比
图7  0.027%Ce实验用钢(R3)中夹杂物聚集图
图8  实验用钢显微组织的OM像(a) R0 (b) R1 (c) R2 (d) R3
图9  实验用钢中的铁素体含量
图10  R1钢的单轴平衡性质图
图11  铈基复合夹杂物的生成过程简图
SteelAc1 / oCAc3 / oC
R0715803
R1705780
R2675795
R3710785
表2  实验用钢的相变点
图12  晶界和相界面处的元素分布
图13  晶界及相界面处Ce和S的元素分布(a) diagram of scanning position of α-α grain boundary (unit: nm)(b) diagram of scanning position of α-P phase boundary (unit: nm)(c) element distributions at α-α grain boundaries(d) element distributions at α-P phase boundaries
图14  复合夹杂物周围的晶内铁素体(a) SEM image of tissue(b) EDS point scanning of inclusions
1 Stuart H. The properties and processing of microalloyed HSLA steels [J]. JOM, 1991, 43(1): 35
2 Paules J R. Developments in HSLA steel products [J]. JOM, 1991, 43(1): 41
3 Lu J L, Cheng G G, Tan B, et al. Effect of Zr, Al addition on characteristics of MnS and formation of intragranular ferrite in non-quenched and tempered steel [J]. ISIJ Int., 2018, 58: 921
4 Lu J L, Cheng G G, Chen L, et al. Distribution and morphology of MnS inclusions in resulfurized non-quenched and tempered steel with Zr addition [J]. ISIJ Int., 2018, 58: 1307
5 Chen H X, Zhou P, Chen A J, et al. Development of free cutting steel for automobile [J]. Chin. Metall., 2001, (3): 32
5 陈洪星, 周 平, 陈爱洁等. 汽车用易切削钢的开发 [J]. 中国冶金, 2001, (3): 32
6 Li M L. Study on formation behavior and homogenization control of sulfide inclusions in free-cutting non-quenched and tempered steel [D]. Beijing: University of Science and Technology Beijing, 2015
6 李梦龙. 易切削非调质钢中硫化物生成行为与均匀化控制研究 [D]. 北京: 北京科技大学, 2015
7 Sun H, Wu L P, Xie J B, et al. Inclusions modification and improvement of machinability in a non-quenched and tempered steel with Mg treatment [J]. Metall. Res. Technol., 2020, 117: 208
8 Lin S G, Yang H H, Su Y H, et al. CALPHAD-assisted morphology control of manganese sulfide inclusions in free-cutting steels [J]. J. Alloys Compd., 2019, 779: 844
9 Shen P, Fu J X. Morphology study on inclusion modifications using Mg-Ca treatment in resulfurized special steel [J]. Materials, 2019, 12: 197
10 Ma Q Q, Wu C C, Cheng G G, et al. Characteristic and formation mechanism of inclusions in 2205 duplex stainless steel containing rare earth elements [J]. Mater. Today: Proc., 2015, 2(suppl.2): S300
11 Zhang Q S, Min Y, Xu J J, et al. Formation and evolution behavior of inclusions in Al-killed resulfurized free-cutting steel with magnesium treatment [J]. J. Iron Steel Res. Int., 2020, 27: 631
12 Dong H Y, Hu L J, Liang W Y, et al. Effect of rare earth element Ce on corrosion resistance of 316L stainless steel [J]. Corros. Sci. Prot. Technol., 2018, 30: 489
12 董海英, 胡丽娟, 梁婉怡等. 稀土Ce对316L不锈钢耐腐蚀性能的影响 [J]. 腐蚀科学与防护技术, 2018, 30: 489
13 Wang L M, Lin Q, Ji J W, et al. New study concerning development of application of rare earth metals in steels [J]. J. Alloys Compd., 2006, 408-412: 384
14 Huang Y, Cheng G G, Xie Y. Modification mechanism of cerium on the inclusions in drill steel [J]. Acta Metall. Sin., 2018, 54: 1253
14 黄 宇, 成国光, 谢 有. 稀土Ce对钎具钢中夹杂物的改质机理研究 [J]. 金属学报, 2018, 54: 1253
15 Huang Y, Cheng G G, Li S J, et al. Precipitation mechanism and thermal stability of primary carbide in Ce microalloyed H13 steel [J]. Acta Metall. Sin., 2019, 55: 1487
15 黄 宇, 成国光, 李世健等. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究 [J]. 金属学报, 2019, 55: 1487
16 Torkamani H, Raygan S, Garcia Mateo C, et al. Contributions of rare earth element (La, Ce) addition to the impact toughness of low carbon cast niobium microalloyed steels [J]. Met. Mater. Int., 2018, 24: 773
17 Adabavazeh Z, Hwang W S, Su Y H. Effect of adding cerium on microstructure and morphology of Ce-based inclusions formed in low-carbon steel [J]. Sci. Rep., 2017, 7: 46503
18 Torkamani H, Raygan S, Mateo C G, et al. The Influence of La and Ce addition on inclusion modification in cast niobium micro-alloyed steels [J]. Metals, 2017, 7: 377
19 Liu D L, Wang Y L, Huo X D, et al. Crain refinement and strengthening of low garbon steel by CSP technology [J]. Acta Metall. Sin., 2002, 38: 647
19 柳得橹, 王元立, 霍向东等. CSP低碳钢的晶粒细化与强韧化 [J]. 金属学报, 2002, 38: 647
20 Aranda M M, Kim B, Rementeria R, et al. Effect of prior austenite grain size on pearlite transformation in a hypoeuctectoid Fe-C-Mn steel [J]. Metall. Mater. Trans., 2014, 45A: 1778
21 Zhao H T, Palmiere E J. Effect of austenite grain size on acicular ferrite transformation in a HSLA steel [J]. Mater. Charact., 2018, 145: 479
22 Liang Y L, Yi Y L, Long S L, et al. Effect of rare earth elements on isothermal transformation kinetics in Si-Mn-Mo bainite steels [J]. J. Mater. Eng. Perform., 2014, 23: 4251
23 Jiang Z H, Wang P, Li D Z, et al. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45: 1
24 Bhattacharya A, Mondal K, Upadhyay C S, et al. A phase-field investigation of the effect of grain-boundary diffusion on austenite to ferrite transformation [J]. Comput. Mater. Sci., 2020, 173: 109428
25 Wang L M, Lin Q, Yue L J, et al. Study of application of rare earth elements in advanced low alloy steels [J]. J. Alloys Compd., 2008, 451: 534
26 Suito H, Ohta H, Morioka S. Refinement of solidification microstructure and austenite grain by fine inclusion particles [J]. ISIJ Int., 2006, 46: 840
[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[4] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[5] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[6] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[7] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[8] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[9] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[10] 王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
[11] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[12] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[13] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[14] 吴斯, 李秀程, 张娟, 尚成嘉. Nb对中碳钢相变和组织细化的影响*[J]. 金属学报, 2014, 50(4): 400-408.
[15] 王新华,李秀刚,李强,黄福祥,李海波,杨建. X80管线钢板中条串状CaO-Al2O3系非金属夹杂物的控制[J]. 金属学报, 2013, 49(5): 553-561.