Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 60-70    DOI: 10.11900/0412.1961.2015.00201
  本期目录 | 过刊浏览 |
2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*
康举1,2,李吉超2,冯志操2,邹贵生1,王国庆4,吴爱萍1,3()
1 清华大学机械工程系, 北京 100084
2 Fontana Corrosion Center, The Ohio State University, Columbus, Ohio 43210-1185, USA
3 清华大学机械工程系摩擦学国家重点实验室, 北京 100084
4 中国运载火箭技术研究院, 北京 100076
INVESTIGATION ON MECHANICAL AND STRESS CORROSION CRACKING PROPERTIES OF WEAKNESS ZONE IN FRICTION STIR WELDED 2219-T8 Al ALLOY
Ju KANG1,2,Jichao LI2,Zhicao FENG2,Guisheng ZOU1,Guoqing WANG4,Aiping WU1,3()
1 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2 Fontana Corrosion Center, The Ohio State University, Columbus, Ohio 43210-1185, USA
3 State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
4 China Academy of Launch Vehicle Technology, Beijing 100076, China
引用本文:

康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
Ju KANG, Jichao LI, Zhicao FENG, Guisheng ZOU, Guoqing WANG, Aiping WU. INVESTIGATION ON MECHANICAL AND STRESS CORROSION CRACKING PROPERTIES OF WEAKNESS ZONE IN FRICTION STIR WELDED 2219-T8 Al ALLOY[J]. Acta Metall Sin, 2016, 52(1): 60-70.

全文: PDF(8969 KB)   HTML
摘要: 

对2219-T8铝合金搅拌摩擦焊 (FSW) 接头在拉伸过程中, 热机械影响区(TMAZ)的变形行为、断裂途径和190 MPa下微区电化学性能进行了研究. 结果表明, 焊接热循环和搅拌作用加权强化效果最弱的区域是强度最差的位置; 拉伸时接头变形主要发生在TMAZ, 但由于受到焊核区的拘束程度不同, TMAZ下层应变更大, 导致裂纹起源于下层; 在相同的应力水平下, TMAZ表面的钝化膜更易破裂, 甚至会有微裂纹出现, 这使得当接头处于应力腐蚀环境中时, TMAZ更易发生局部腐蚀, 导致接头的抗应力腐蚀能力下降.

关键词 2219铝合金搅拌摩擦焊(FSW)薄弱区微区电化学特性应力腐蚀开裂(SCC)原位拉伸    
Abstract

Al alloy 2219 (AA2219) is widely used in the aerospace industry, and friction stir welding (FSW) is an ideal method to join it. The ultimate tensile strength of an FSW AA2219-T8 joint can be as high as 344 MPa which is significantly higher than that welded by other methods such as gas tungsten arc welding. However, the thermo-mechanically affected zone (TMAZ) in the FSW joints of AA2219-T6/T8 is a weakness zone of mechanical property and is susceptible to stress corrosion cracking (SCC), but the reasons are not been well understood. In this work, the mechanical and electrochemical properties of different zones in AA2219-T8 joints obtained by the FSW method were studied. The welding thermal cycles during welding were measured using an array of type K thermocouples. During the tensile process of the joints, digital image correlation (DIC) technique and high speed video technique were employed to investigate the deformational behavior and fracture pathway of the TMAZ, respectively. A microcell method was used to study the micro-electrochemical characteristics of the joints with and without stress. The results showed that the minimum strength located at a position where the weighted strengthening effects of both thermal cycles and stir action were the weakest. The DIC results revealed that the deformation concentrated mainly in the TMAZ during the tensile tests. However, due to the different restraints from the nugget zone (NZ) led to a large strain in the root side than that in the crown side. This made the root side susceptible to cracks initiation. In situ tensile testing indicated that cracks occurred only in the TMAZ at 190 MPa, indicating that the protective surface films in the TMAZ were more prone to crack than those in other zones of the joint. This led the TMAZ to be the weakest zone to pitting corrosion in an aggressive environment. Once pits generate in the TMAZ, the local stress will concentrate near the tip of the pitting, resulting in failure.

Key words2219 Al alloy    friction stir welding (FSW)    weakness zone    micro-electrochemical characteristic    stress corrosion cracking (SCC)    in situ tensile testing
收稿日期: 2015-04-07     
图1  接头中取样位置示意图
图2  用于测试应力条件下接头微区电化学性能的试样和测试位置示意图
图3  Microcell示意图和测试用工作端
图4  Microcell测试时试样应力加载装置示意图
图5  2219-T8铝合金BM和FSW接头工程应力-工程应变曲线
图6  2219-T8铝合金FSW接头显微硬度分布
图7  2219-T8铝合金FSW接头应变场变化的DIC测试结果
图8  TMAZ在图2b中所示位置的工程应变-工程应力曲线
图9  接头断裂位置和颈缩现象
图10  接头断裂过程
图11  有无应力下2219-T8铝合金FSW接头各微区电化学特性
图12  原位拉伸实验前2219-T8铝合金FSW接头的OM像
图13  191 MPa下TMAZ出现的穿晶和沿晶裂纹
图14  2219-T8铝合金FSW接头原位拉伸断裂位置横截面OM像
图15  焊缝上下表面宽度示意图
[1] Xu W F, Liu J H, Luan G H, Dong C L. Acta Metall Sin, 2008; 44: 1404
[1] (徐韦锋, 刘金合, 栾国红, 董春林. 金属学报, 2008; 44: 1404)
[2] Malarvizhi S, Balasubramanian V. Mater Des, 2011; 32: 1205
[3] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[4] Kang J, Fu R D, Luan G H, Dong C L, He M. Corros Sci, 2010; 52: 620
[5] Liu H J, Zhang H J, Yu L. Mater Des, 2011; 32: 1548
[6] Srinivasan P B, Arora K S, Dietzel W, Pandey S, Schaper M K. J Alloys Compd, 2010; 492: 631
[7] Chen Y C, Feng J C, Liu H J. Mater Charact, 2009; 60: 476
[8] Liu H J, Zhang H J, Huang Y X, Yu L. Trans Nonferrous Met Soc China, 2010; 20: 1387
[9] Xu W F, Liu J H, Luan G H, Dong C L. Mater Des, 2009; 30: 3460
[10] Paglia C S, Buchheit R G. Mater Sci Eng, 2006; A429: 107
[11] Zhang H J, Liu H J, Yu L. Sci Technol Weld Joining, 2011; 16: 459
[12] Zhang H J, Liu H J. Mater Des, 2013; 45: 206
[13] Li J Q, Liu H J. Mater Des, 2013; 43: 299
[14] Li J Q, Liu H J. Mater Des, 2013; 45: 148
[15] Malarvizhi S, Balasubramanian V. Trans Nonferrous Met Soc China, 2011; 21: 962
[16] Suter T, B?hni H. Electrochim Acta, 2001; 47: 191
[17] Liu X D, Frankel G S, Zoofan B, Rokhlin S I. Corros Sci, 2004; 46: 405
[18] Yang B C, Yan J H, Sutton M A, Reynolds A P. Mater Sci Eng, 2004; A364: 55
[19] John M P. Metall Trans, 1981; 12A: 269
[20] Xu W F, Liu J H, Luan G H, Dong C L. Acta Metall Sin, 2009; 45: 490
[20] (徐韦锋, 刘金合, 栾国红, 董春林. 金属学报, 2009; 45: 490)
[21] Cui G R, Ma Z Y, Li S X. Acta Mater, 2009; 57: 5718
[22] Kang J, Luan G H, Fu R D. Acta Metall Sin, 2011; 47: 224
[22] (康 举, 栾国红, 付瑞东. 金属学报, 2011; 47: 224)
[23] Yan D Y, Shi Q Y, Wu A P, Juergen S, Zhang Z L. J Mech Eng, 2010; 46: 106
[23] (鄢东洋, 史清宇, 吴爱萍, Juergen S, 张增磊. 机械工程学报, 2010; 46: 106)
[24] Lei X F, Deng Y, Yin Z M, Xu G F. J Mater Eng Perform, 2014; 23: 2149
[25] Xu W F, Liu J H, Chen D L, Luan G H. Int J Adv Manuf Technol, 2014; 74: 209
[26] Dai Q L, Liang Z F, Wu J J, Meng L C, Shi Q Y. Acta Metall Sin, 2014; 50: 587
[26] (戴启雷, 梁志芳, 吴建军, 孟立春, 史清宇. 金属学报, 2014; 50: 587)
[27] Woo W, Balogh L, Ungar T, Choo H, Feng Z L. Mater Sci Eng, 2008; A498: 308
[28] Du D X, Fu R D, Li Y J, Jing L, Ren Y B, Yang K. Mater Sci Eng, 2014; A616: 246
[29] Baek Y, Frankel G S. J Electrochem Soc, 2003; 150B: 1
[30] Kim Y, Buchheit R G. Electrochim Acta, 2007; 52: 2437
[31] Garcia V S, Colin F, Skeldon P, Thompson G E, Bailey P, Noakes T C Q, Habazaki H, Shimizu K. J Electrochem Soc, 2004; 151B: 16
[32] Ramgopal T, Frankel G S. Corrosion, 2001; 57: 702
[33] Muller I L, Galvele J R. Corros Sci, 1977; 17: 179
[34] Newman R C, Healey C. Corros Sci, 2007; 49: 4040
[35] Feng Z, Frankel G S, Matzdorf C A. J Electrochem Soc, 2014; 161C: 42
[36] Feng Z, Boerstler J, Frankel G S, Matzdorf C A. Corrosion, 2015; 71: 771
[37] Uhlig H H. Corrosion and Corrosion Control: an Introduction to Corrosion Science and Engineering. New York: John Wiley & Sons Inc, 1971: 309
[38] Birnbaum H K, Sofronis P. Mater Sci Eng, 1994; A176: 191
[1] 康举,梁苏莹,吴爱萍,李权,王国庆. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358-368.
[2] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[3] 许志武,马志鹏,闫久春,张誉喾,张旭昀. Ti/Al异种合金接头原位拉伸应变场及断裂行为的研究*[J]. 金属学报, 2016, 52(11): 1403-1412.
[4] 石晶,郭振玺,隋曼龄. a-Ti在原位透射电镜拉伸变形过程中位错的滑移系确定*[J]. 金属学报, 2016, 52(1): 71-77.
[5] 闫茂成, 王俭秋, 韩恩厚, 孙成, 柯伟. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50(9): 1137-1145.
[6] 武会宾, 武凤娟, 杨善武, 唐荻. 微米/亚微米双峰尺度奥氏体组织形成机制*[J]. 金属学报, 2014, 50(3): 269-274.
[7] 康举 栾国红 付瑞东. 7075-T6铝合金搅拌摩擦焊焊缝表面带状纹理的组织与性能[J]. 金属学报, 2011, 47(2): 224-230.
[8] 沈连成; 何健英; 宿彦京; 褚武扬; 乔利杰 . Ni2MnGa铁磁形状记忆合金开裂的原位研究[J]. 金属学报, 2006, 42(8): 810-814 .
[9] 李金许; 褚武扬; 高克玮; 乔利杰 . 块状非晶剪切带和微裂纹形核扩展的SEM原位研究[J]. 金属学报, 2003, 39(4): 359-363 .
[10] 陆永浩; 乔利杰; 褚武扬 . Cu-Ni-Al形状记忆合金形变、相变以及裂纹形核的相互关系[J]. 金属学报, 2001, 37(7): 686-690 .
[11] 单智伟; 杨继红 . 单晶Ni3Al裂纹扩展的TEM原位观察[J]. 金属学报, 2000, 36(3): 262-267 .
[12] 吕铮;徐永波;胡壮麒. 钴基高温合金裂尖塑性区位错结构的原位观察[J]. 金属学报, 1998, 34(2): 129-133.
[13] 张静武;刘文昌;段志翔;郑炀曾. 22Mn-13Cr-5Ni-0.2N钢裂纹Z字形扩展的TEM原位分析[J]. 金属学报, 1997, 33(9): 927-932.
[14] 李红旗;陈奇志;褚武扬. 不锈钢微裂纹形核扩展的TEM原位观察[J]. 金属学报, 1996, 32(11): 1159-1164.
[15] 朱维斗;顾海澄;郭延东. Ti-1023合金拉伸试验的电镜原位观察[J]. 金属学报, 1994, 30(10): 463-468.