Skip to main content
  • Original research
  • Open access
  • Published:

Some properties for meromorphic functions associated with integral operators

Abstract

In the present paper we aim at proving some subordinations properties for meromorphic functions analytic in the punctured unit disc \(\Delta ^*=\{z:0<|z|<1\}\) with a simple pole at the origin. The functions under investigation are associated with two integral operators \(\mathcal {P}_\sigma ^\gamma\) and \(\mathcal {Q}_\sigma ^\gamma\) (see Lashin in Comput Math Appl 59:524–531, 2010, https://doi.org/10.1016/j.camwa.2009.06.015). Several other results and numerical examples are also obtained.

Introduction and Preliminaries

Let \(\Sigma\) denote the class of functions of the form

$$\begin{aligned} f(z)=1/z+\sum _{\kappa =1}^\infty c_\kappa z^\kappa \end{aligned}$$
(1)

which are analytic in the punctured unit disc \(\Delta ^*=\{z:0<|z|<1\}\) with a simple pole at the origin.

Definition 1

For \(f(z)\in \Sigma\), given by (1) and \(h(z)\in \Sigma\) defined by

$$\begin{aligned} h(z)=1/z+\sum _{\kappa =1}^\infty h_\kappa z^\kappa , \end{aligned}$$

Hadamard product (or convolution) of f(z) and h(z) is given by

$$\begin{aligned} (f*h)(z)=1/z+\sum _{\kappa =1}^\infty c_\kappa h_\kappa z^\kappa =(h*f)(z). \end{aligned}$$

Definition 2

[2] For two functions f and g, analytic in \(\Delta =\{z:|z|<1\}\), we say that the function f is subordinate to g in \(\Delta\), written \(f\prec g\), if there exists a Schwarz function \(\omega (z)\) which is analytic in \(\Delta\), satisfying the following conditions:

$$\begin{aligned} \omega (0)=0\quad \quad \quad \text {and}\quad \quad |\omega (z)|<1;\quad (z\in \Delta ), \end{aligned}$$

such that

$$\begin{aligned} f(z)=g(\omega (z));\quad \quad (z\in \Delta ). \end{aligned}$$

In particular, if the function g is univalent in \(\Delta\), we have the following equivalence (see also [3, 4]):

$$\begin{aligned} f(z)\prec g(z)\quad (z\in \Delta )\quad \Longleftrightarrow \quad f(0)=g(0)\quad \text {and}\quad f(\Delta )\subset g(\Delta ). \end{aligned}$$

In 2010, Lashin [1] defined the following integral operators \(\mathcal {P}_\sigma ^\gamma ,\,\mathcal {Q}_\sigma ^\gamma ,\,\mathcal {J}_\sigma :\Sigma \rightarrow \Sigma\) as follows:

$$\begin{aligned}{} & {} \mathcal {P}_\sigma ^\gamma f(z)= \frac{\sigma ^\gamma }{z^{\sigma +1}\Gamma (\gamma )}\int _0^z s^{\sigma } \left( log\left( \frac{z}{s} \right) \right) ^{\gamma -1}f(s)ds\qquad (\gamma ,\sigma>0,\,z\in \Delta ^*),\\{} & {} \mathcal {Q}_\sigma ^\gamma f(z)= \frac{\Gamma (\sigma +\gamma )}{z^{\sigma +1}\Gamma (\sigma )\Gamma (\gamma )}\int _0^z s^{\sigma } \left( 1-\frac{s}{z} \right) ^{\gamma -1}f(s)ds\qquad (\gamma ,\sigma >0,\,z\in \Delta ^*), \end{aligned}$$

and

$$\begin{aligned} \mathcal {J}_\sigma f(z)= \frac{\sigma }{z^{\sigma +1}}\int _0^z s^{\sigma } f(s)ds\qquad (\sigma >0,\,z\in \Delta ^*), \end{aligned}$$

where \(\Gamma (\gamma )\) is the familiar Gamma function.

Using the integral representation of the Gamma functions, it can be shown that

Definition 3

Let \(f(z)\in \Sigma\) be given by (1), then

$$\begin{aligned} \mathcal {P}_\sigma ^\gamma f(z)= & {} 1/z+\sum _{\kappa =1}^\infty \left( \frac{\sigma }{\kappa +\sigma +1} \right) ^\gamma c_\kappa z^\kappa \qquad \qquad \qquad (\gamma ,\sigma >0,\,z\in \Delta ^*), \end{aligned}$$
(2)
$$\begin{aligned} \mathcal {Q}_\sigma ^\gamma f(z)= & {} 1/z+\frac{\Gamma (\sigma +\gamma )}{\Gamma (\sigma )}\sum _{\kappa =1}^\infty \frac{\Gamma (\kappa +\sigma +1)}{\Gamma (\kappa +\sigma +\gamma +1)}c_\kappa z^\kappa \qquad (\gamma ,\sigma >0,\,z\in \Delta ^*), \end{aligned}$$
(3)

and

$$\begin{aligned} \mathcal {J}_\sigma f(z)= 1/z+\sum _{\kappa =1}^\infty \frac{\sigma }{\kappa +\sigma +1} c_\kappa z^\kappa \qquad \qquad \qquad \qquad \qquad (\sigma >0,\,z\in \Delta ^*). \end{aligned}$$
(4)

By (3) and (4), we can easily obtain that

$$\begin{aligned} z(\mathcal {P}_{\sigma }^{\gamma } f(z))' &= {} \sigma \mathcal {P}_{\sigma }^{\gamma -1} f(z) -(\sigma +1) \mathcal {P}_{\sigma }^{\gamma } f(z) \qquad (\sigma>0,\,\gamma > 1) \end{aligned}$$
(5)

and

$$\begin{aligned} z(\mathcal {Q}_{\sigma }^{\gamma } f(z))' = & {} (\sigma +\gamma -1) \mathcal {Q}_{\sigma }^{\gamma -1} f(z) -(\sigma +\gamma ) \mathcal {Q}_{\sigma }^{\gamma } f(z) \qquad (\sigma>0,\,\gamma > 1). \end{aligned}$$
(6)

Remark 1

  1. (i)

    Putting \(\gamma =1\) in the integral operators \(\mathcal {P}_{\sigma }^{\gamma }\) and \(\mathcal {Q}_{\sigma }^{\gamma }\), we obtain \(\mathcal {Q}_{\sigma }^{1}=\mathcal {P}_{\sigma }^{1}=\mathcal {J}_\sigma\);

  2. (ii)

    The operator \(\mathcal {J}_\sigma\) was defined and studied by Kumar and Shukla [5, Theorem 4.2, with \(p=1\)].

In order to prove our main results, we recall the following lemmas:

Lemma 1

[6, 7] If g(z) is a convex function in \(\Delta\) with \(g(0)=1\), \(q(z)=1+q_1(z)+q_2(z)+...\) is analytic in \(\Delta\) and \(\delta \in \mathbb {C},\) \(\text {Re}(\delta )>0,\) then

$$\begin{aligned} q(z)+\frac{zq'(z)}{\delta }\prec g(z) \end{aligned}$$

implies

$$\begin{aligned} q(z)\prec \delta z^{-\delta } \int _0^z s^{\delta -1} g(s) ds=\hbar (z)\prec g(z) \end{aligned}$$

and \(\hbar (z)\) is the best dominant.

Definition 4

Let ab and c be complex and real numbers with \(c\ne 0,-1,-2,...\). The Gaussian hypergeometric function is defined by the power series

$$\begin{aligned} \begin{aligned} _2F_1(a,b;c;z)&=1+\frac{ab}{c}z+\frac{a(a+1)b(b+1)}{2! c(c+1)}z^2+...\\ {}&=\sum _{\kappa =0}^\infty \frac{(a)_\kappa (b)_\kappa }{(c)_\kappa (1)_\kappa } z^\kappa , \end{aligned} \end{aligned}$$

where \((a)_\kappa =\Gamma (a+\kappa )/\Gamma (a)\) is the Pochhammer symbol.

Lemma 2

[8, 9] For abc real numbers other than \(0,-1,-2,...\) and \(c>b>0,\) we have

$$\begin{aligned} \int _0^1 s^{b-1} (1-s)^{c-b-1} (1-sz)^{-a} ds= & {} \frac{\Gamma (b)\Gamma (c-b)}{\Gamma (c)}\, {_2}F_1(a,b;c;z) \end{aligned}$$
(7)
$$\begin{aligned} {_2}F_1(a,b;c;z)= & {} (1-z)^{-a} {_2}F_1(a,c-b;c;z/(z-1)) \end{aligned}$$
(8)
$$\begin{aligned} {_2}F_1(1,1;2;z)= & {} -(1/z)ln(1-z) \end{aligned}$$
(9)
$$\begin{aligned}{} & {} c(c-1)(z-1) {_2}\,F_1(a,b;c-1;z)+ c[c-1-(2c-a-b-1)z]\, {_2}F_1(a,b;c;z) +(c-a)(c-b)z\, {_2}F_1(a,b;c+1;z)=0. \end{aligned}$$
(10)

Lemma 3

For any real number \(\alpha \ne 0,\) we have

$$\begin{aligned} _2F_1(1,1;2;\alpha z/(\alpha z+1))= & {} \frac{(1+\alpha z) ln(1+\alpha z)}{\alpha z}, \end{aligned}$$
(11)
$$\begin{aligned} _2F_1(1,1;3;\alpha z/(\alpha z+1))= & {} \frac{2(1+\alpha z)}{\alpha z}\left[ 1-\frac{ln(1+\alpha z)}{\alpha z} \right] , \end{aligned}$$
(12)
$$\begin{aligned} _2F_1(1,1;4;\alpha z/(\alpha z+1))= & {} \frac{3(1+\alpha z)}{2(\alpha z)^3}[2 ln(1+\alpha z)-\alpha z(2-\alpha z)], \end{aligned}$$
(13)
$$\begin{aligned} _2F_1(1,1;5;\alpha z/(\alpha z+1))= & {} \frac{2(1+\alpha z)}{(\alpha z)^3}\left[ \frac{2(\alpha z)^2-3\alpha z+6}{3}-\frac{2 ln(1+\alpha z)}{\alpha z} \right] . \end{aligned}$$
(14)

Proof

To prove the relation (11), substituting for \(z=\alpha z/(\alpha z+1)\) in (9), we obtain

$$\begin{aligned} \begin{aligned} _2F_1(1,1;2;\alpha z/(\alpha z+1))&=-\left( \frac{1+\alpha z}{\alpha z}\right) \ln \left( 1-\frac{\alpha z}{\alpha z+1} \right) \\&=-\left( \frac{1+\alpha z}{\alpha z}\right) \ln \left( \frac{1}{\alpha z+1} \right) \\&= \frac{(1+\alpha z) ln(1+\alpha z)}{\alpha z}. \end{aligned} \end{aligned}$$

Now, we prove the relation (12), by replacing \(a=b=1\) and \(c=2\) in (10), we obtain

$$\begin{aligned} 2(z-1) _2F_1(1,1;1;z)+2(1-z) \,_2F_1(1,1;2;z)+z \,_2F_1(1,1;3,z)=0 \end{aligned}$$

then

$$\begin{aligned} \begin{aligned} \,_2F_1(1,1;3,z)&= \frac{1}{z}[-2(z-1) _2F_1(1,1;1;z)-2(1-z) \,_2F_1(1,1;2;z)]\\&= \frac{2}{z}\left[ 1+\frac{1-z}{z}ln(1-z)\right] . \end{aligned} \end{aligned}$$

By replacing \(z=\alpha z/(\alpha z+1)\) in the above equation, we obtain

$$\begin{aligned} \begin{aligned} _2F_1(1,1;3,\alpha z/(\alpha z+1))&= \frac{2(1+\alpha z)}{\alpha z}\left[ 1+\frac{1}{\alpha z}ln \left( 1-\frac{\alpha z}{1+\alpha z}\right) \right] \\&=\frac{2(1+\alpha z)}{\alpha z}\left[ 1-\frac{ln (1+\alpha z)}{\alpha z}\right] . \end{aligned} \end{aligned}$$

Similarly, we can obtain the relations (13) and (14). \(\square\)

The purpose of this paper is to prove some subordinations properties for meromorphic functions analytic in the punctured unit disc \(\Delta ^*=\{z:0<|z|<1\}.\) The functions under investigation are associated with two integral operators \(\mathcal {P}_\sigma ^\gamma\) and \(\mathcal {Q}_\sigma ^\gamma\). Several other results and numerical examples are also obtained.

Main results

Unless otherwise mentioned, we assume throughout this paper that \(\gamma>2,\,\sigma >0\) and \(-1\le B<A\le 1.\)

Theorem 1

Let

$$\begin{aligned} \frac{\mathcal {P}_\sigma ^{\gamma -1}f(z)}{\mathcal {P}_\sigma ^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}_\sigma ^{\gamma -2}f(z)}{\mathcal {P}_\sigma ^{\gamma -1} f(z)}- \frac{\mathcal {P}_\sigma ^{\gamma -1}f(z)}{\mathcal {P}_\sigma ^{\gamma }f(z)} \right) \prec \frac{1+A z}{1+B z}\qquad (\sigma>0,\,\gamma >2) \end{aligned}$$
(15)

then we have

$$\begin{aligned} \frac{\mathcal {P}_\sigma ^{\gamma -1}f(z)}{\mathcal {P}_\sigma ^{\gamma } f(z)}\prec \hbar (z) \prec \frac{1+A z}{1+B z}\qquad (z\in \Delta ) \end{aligned}$$

where

$$\begin{aligned} \hbar (z)=(1+Bz)^{-1}\left[ \,{_2}F_1\bigg (1,1;1+\sigma ;Bz/(1+Bz)\bigg ) +\frac{\sigma A z}{\sigma +1 } \,{_2}F_1\bigg (1,1;2+\sigma ;Bz/(1+Bz)\bigg ) \right] \end{aligned}$$
(16)

and \(\hbar (z)\) is the best dominant. Furthermore,

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}_\sigma ^{\gamma -1}f(z)}{\mathcal {P}_\sigma ^{\gamma } f(z)} \right) >\eta \end{aligned}$$

where

$$\begin{aligned} \eta =(1-B)^{-1}\left[ \,{_2}F_1\bigg (1,1;1+\sigma ;B/(B-1)\bigg ) -\frac{\sigma A}{\sigma +1}\, {_2}F_1\bigg (1,1;2+\sigma ;B/(B-1)\bigg ) \right] . \end{aligned}$$
(17)

Proof

Suppose that

$$\begin{aligned} q(z)= \frac{\mathcal {P}_\sigma ^{\gamma -1}f(z)}{\mathcal {P}_\sigma ^{\gamma } f(z)}, \end{aligned}$$
(18)

then \(q(z)=1+a_1 z+a_2 z^2+...\) is analytic in \(\Delta\) with \(q(0)=1\). Using the logarithmic differentiation of the both sides of (18) with respect to z and with the aid of the identity (5), we get

$$\begin{aligned} \left( \frac{1}{\sigma } \right) \frac{ zq'(z)}{ q(z)}= \frac{\mathcal {P}_\sigma ^{\gamma -2}f(z)}{\mathcal {P}_\sigma ^{\gamma -1} f(z)}-\frac{\mathcal {P}_\sigma ^{\gamma -1}f(z)}{\mathcal {P}_\sigma ^{\gamma } f(z)} \end{aligned}$$
(19)

By using (18) and (19), we obtain

$$\begin{aligned} \frac{\mathcal {P}_\sigma ^{\gamma -1}f(z)}{\mathcal {P}_\sigma ^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}_\sigma ^{\gamma -2}f(z)}{\mathcal {P}_\sigma ^{\gamma -1} f(z)}- \frac{\mathcal {P}_\sigma ^{\gamma -1}f(z)}{\mathcal {P}_\sigma ^{\gamma }f(z)} \right) =q(z)+\left( \frac{1}{\sigma }\right) zq'(z). \end{aligned}$$

Thus, by using Lemma 1, for \(\delta =\sigma\), we have

$$\begin{aligned} \frac{\mathcal {P}_\sigma ^{\gamma -1}f(z)}{\mathcal {P}_\sigma ^{\gamma } f(z)}\prec \sigma z^{-\sigma } \int _0^z s^{\sigma -1}\frac{1+A s}{1+Bs}ds =\hbar (z). \end{aligned}$$

Using the identities (7) and (8), we can written \(\hbar (z)\) as following:

$$\begin{aligned} \hbar (z)= & {} \sigma \int _0^1 t^{\sigma -1}\frac{1+A tz}{1+Btz}dt \\= & {} \sigma \bigg [ \int _0^1 t^{\sigma -1}(1+Btz)^{-1}dt+A z \int _0^1 t^{\sigma }(1+Btz)^{-1}dt\bigg ]\\= & {} (1+Bz)^{-1}\bigg [\, _2F_1\bigg (1,1;1+\sigma , Bz/(1+Bz) \bigg )+\frac{\sigma A z}{\sigma +1}\, _2F_1\bigg (1,1;2+\sigma , Bz/(1+Bz)\bigg ) \bigg ]. \end{aligned}$$

This completes the proof of (16) of Theorem 1. Now, to prove the assertion (17) of Theorem 1, it suffices to show that

$$\begin{aligned} \inf _{|z|<1}\{\hbar (z)\}=\hbar (-1). \end{aligned}$$
(20)

Indeed, for \(|z|\le r<1,\)

$$\begin{aligned} \text {Re}\bigg (\frac{1+Az}{1+Bz}\bigg )\ge \frac{1-A r}{1-Br}. \end{aligned}$$

Upon setting

$$\begin{aligned} K(t,z)=\frac{1+Atz}{1+Btz} \text { and } d\nu (t)=\sigma t^{\sigma -1} dt\qquad \qquad (0\le t\le 1,\, z\in \Delta ), \end{aligned}$$

which is a positive measure on [0, 1], we get

$$\begin{aligned} \hbar (z)=\int _0^1 K(t,z) d\nu (t), \end{aligned}$$

so that

$$\begin{aligned} \text {Re}(\hbar (z))\ge \int _0^1 \bigg (\frac{1-Atr}{1-Btr}\bigg ) d\nu (t)=\hbar (-r)\qquad \qquad (|z|\le r<1). \end{aligned}$$

Letting \(r\rightarrow 1^-\) in the above inequality, we obtain the assertion (20). The result in (17) is the best possible as the function \(\hbar (z)\) is the best dominant of (16). The proof of Theorem 1 is completed. \(\square\)

Letting \(\sigma =1\) in Theorem 1 and using the identities (11) and (12), we have

Corollary 1

Let

$$\begin{aligned} \frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}^{\gamma -2}f(z)}{\mathcal {P}^{\gamma -1} f(z)}- \frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma }f(z)} \right) \prec \frac{1+A z}{1+B z}\qquad (\gamma >2) \end{aligned}$$

then we have

$$\begin{aligned} \frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma } f(z)}\prec \hbar (z) \prec \frac{1+A z}{1+B z}\qquad (z\in \Delta ) \end{aligned}$$

where

$$\begin{aligned} \hbar (z)=\left\{ \begin{array}{lll} \bigg (1-\frac{A}{B} \bigg )\frac{\ln (1+Bz)}{Bz}+\frac{A}{B} &{} \quad &{} \quad B\ne 0 \\ &{} \quad &{} \\ 1+\frac{A}{2}z &{} \quad &{} \quad B=0, \end{array} \right. \end{aligned}$$
(21)

and \(\hbar (z)\) is the best dominant. Furthermore,

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma } f(z)} \right) >\eta \end{aligned}$$

where

$$\begin{aligned} \eta =\left\{ \begin{array}{lll} \bigg (\frac{A}{B}-1 \bigg )\frac{\ln (1-B)}{B}+\frac{A}{B} &{} \quad &{} \quad B\ne 0 \\ &{} \quad &{} \\ 1- \frac{A}{2} &{} \quad &{} B=0. \end{array} \right. \end{aligned}$$
(22)

Letting \(B\ne 0\) in Corollary 1, we have

Corollary 2

If

$$\begin{aligned} \frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}^{\gamma -2}f(z)}{\mathcal {P}^{\gamma -1} f(z)}- \frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma }f(z)} \right) \prec \frac{1+\frac{B\ln (1-B)}{B+\ln (1-B)} z}{1+B z}\qquad (\gamma >2) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma } f(z)} \right) >0\qquad \qquad (z\in \Delta ). \end{aligned}$$

Letting \(B=-1\) in Corollary 2, we obtain the following special case

Example 1

If

$$\begin{aligned} \text {Re}\bigg ( \frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}^{\gamma -2}f(z)}{\mathcal {P}^{\gamma -1} f(z)}- \frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma }f(z)} \right) \bigg )> \frac{2\ln 2-1}{2\ln 2-2}\thickapprox -0.61\qquad (\gamma >2) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma } f(z)} \right) >0\qquad \qquad (z\in \Delta ). \end{aligned}$$

Letting \(A=1-2\lambda ,\,(0\le \lambda <1)\) and \(B=-1\) in Corollary 1, we have

Corollary 3

If

$$\begin{aligned} \text {Re}\bigg (\frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}^{\gamma -2}f(z)}{\mathcal {P}^{\gamma -1} f(z)}- \frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma }f(z)} \right) \bigg )>\lambda \qquad (\gamma >2) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}^{\gamma -1}f(z)}{\mathcal {P}^{\gamma } f(z)} \right) >(2\lambda -1)+2(1-\lambda )\ln 2. \end{aligned}$$

Letting \(\sigma =2\) in Theorem 1 and using the identities (12) and (13), we have

Corollary 4

Let

$$\begin{aligned} \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}_2^{\gamma -2}f(z)}{\mathcal {P}_2^{\gamma -1} f(z)}- \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma }f(z)} \right) \prec \frac{1+A z}{1+B z}\qquad (\gamma >2) \end{aligned}$$

then we have

$$\begin{aligned} \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma } f(z)}\prec \hbar (z) \prec \frac{1+A z}{1+B z}\qquad (z\in \Delta ) \end{aligned}$$

where

$$\begin{aligned} \hbar (z)=\left\{ \begin{array}{lll} \bigg (\frac{A}{B}-1 \bigg )\bigg (\frac{2[\ln (1+Bz)-Bz]}{B^2z^2}\bigg )+\frac{A}{B} &{} \quad &{} \quad B\ne 0 \\ &{} \quad &{} \\ \frac{2}{3}Az+1 &{} \quad &{} B=0, \end{array} \right. \end{aligned}$$
(23)

and \(\hbar (z)\) is the best dominant. Furthermore,

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma } f(z)} \right) >\eta \end{aligned}$$

where

$$\begin{aligned} \eta =\left\{ \begin{array}{lll} \bigg (\frac{A}{B}-1 \bigg )\frac{2[\ln (1-B)+B]}{B^2}+\frac{A}{B} &{} \quad &{} \quad B\ne 0 \\ &{} \quad &{} \\ 1-\frac{2}{3}A &{} \quad &{} B=0, \end{array} \right. \end{aligned}$$
(24)

Letting \(B\ne 0\) in Corollary 4, we have

Corollary 5

If

$$\begin{aligned} \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}_2^{\gamma -2}f(z)}{\mathcal {P}_2^{\gamma -1} f(z)}- \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma }f(z)} \right) \prec \frac{1+\frac{B\ln (1-B)}{B+\ln (1-B)} z}{1+B z}\qquad (\gamma >2) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma } f(z)} \right) >0 \qquad \qquad (z\in \Delta ). \end{aligned}$$

Letting \(B=-1\) in Corollary 5, we obtain the following special case

Example 2

If

$$\begin{aligned} \text {Re}\bigg ( \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}_2^{\gamma -2}f(z)}{\mathcal {P}_2^{\gamma -1} f(z)}- \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma }f(z)} \right) \bigg )> \frac{4\ln 2-3}{4 \ln 2-2}\thickapprox -0.29 \qquad (\gamma >2) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma } f(z)} \right) >0 \qquad \qquad (z\in \Delta ). \end{aligned}$$

Letting \(A=1-2\lambda ,\,(0\le \lambda <1)\) and \(B=-1\) in Corollary 4, we have

Corollary 6

If

$$\begin{aligned} \text {Re}\bigg ( \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}_2^{\gamma -2}f(z)}{\mathcal {P}_2^{\gamma -1} f(z)}- \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma }f(z)} \right) \bigg )>\lambda \qquad (\gamma >2) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}_2^{\gamma -1}f(z)}{\mathcal {P}_2^{\gamma } f(z)} \right) >(2\lambda -1)-4(1-\lambda )(\ln 2-1). \end{aligned}$$

Letting \(\sigma =3\) in Theorem 1 and using the identities (13) and (14), we have

Corollary 7

Let

$$\begin{aligned} \frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}_3^{\gamma -2}f(z)}{\mathcal {P}_3^{\gamma -1} f(z)}- \frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma }f(z)} \right) \prec \frac{1+A z}{1+B z}\qquad (\gamma >2) \end{aligned}$$

then we have

$$\begin{aligned} \frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma } f(z)}\prec \hbar (z) \prec \frac{1+A z}{1+B z}\qquad (z\in \Delta ) \end{aligned}$$

where

$$\begin{aligned} \hbar (z)=\left\{ \begin{array}{lll} \bigg (1-\frac{A}{B} \bigg )\frac{3}{B^3z^3}\bigg [\ln (1+Bz)-Bz+\frac{B^2 z^2}{2}\bigg ]+\frac{A}{B} &{} \quad &{} \quad B\ne 0 \\ &{} \quad &{} \\ 1+ \frac{3}{4}Az &{} \quad &{} B=0, \end{array} \right. \end{aligned}$$
(25)

and \(\hbar (z)\) is the best dominant. Furthermore,

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma } f(z)} \right) >\eta \end{aligned}$$

where

$$\begin{aligned} \eta =\left\{ \begin{array}{lll} \bigg (\frac{A}{B}-1 \bigg )\frac{3}{B^3}\bigg [\ln (1-B)+B+\frac{B^2}{2}\bigg ]+\frac{A}{B} &{} \quad &{} \quad B\ne 0 \\ &{} \quad &{} \\ 1- \frac{3}{4}A &{} \quad &{} B=0. \end{array} \right. \end{aligned}$$
(26)

Letting \(B\ne 0\) in Corollary 7, we have

Corollary 8

If

$$\begin{aligned} \frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}_3^{\gamma -2}f(z)}{\mathcal {P}_3^{\gamma -1} f(z)}- \frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma }f(z)} \right) \prec \frac{1+\frac{B\ln (1-B)}{B+\ln (1-B)} z}{1+B z}\qquad (\gamma >2) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma } f(z)} \right) >0\qquad \qquad (z\in \Delta ). \end{aligned}$$

Letting \(B=-1\) in Corollary 8, we obtain the following special case

Example 3

If

$$\begin{aligned} \text {Re}\bigg (\frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}_3^{\gamma -2}f(z)}{\mathcal {P}_3^{\gamma -1} f(z)}- \frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma }f(z)} \right) \bigg )> \frac{12 \ln 2-19}{12\ln 2 -20}\thickapprox 0.91\qquad (\gamma >2) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma } f(z)} \right) >0\qquad \qquad (z\in \Delta ). \end{aligned}$$

Letting \(A=1-2\lambda ,\,(0\le \lambda <1)\) and \(B=-1\) in Corollary 7, we have

Corollary 9

If

$$\begin{aligned} \text {Re}\bigg ( \frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma } f(z)}\left( 1+ \frac{\mathcal {P}_3^{\gamma -2}f(z)}{\mathcal {P}_3^{\gamma -1} f(z)}- \frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma }f(z)} \right) \bigg )>\lambda \qquad (\gamma >2) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {P}_3^{\gamma -1}f(z)}{\mathcal {P}_3^{\gamma } f(z)} \right) > (2\lambda -1)+3(1-\lambda )(2\ln 2-3). \end{aligned}$$

Theorem 2

Let

$$\begin{aligned} \frac{\mathcal {Q}_\sigma ^{\gamma -1}f(z)}{\mathcal {Q}_\sigma ^{\gamma } f(z)}\left( \frac{\mathcal {Q}_\sigma ^{\gamma -2}f(z)}{\mathcal {Q}_\sigma ^{\gamma -1} f(z)}-\frac{\sigma +\gamma -1}{\sigma +\gamma -2} \frac{\mathcal {Q}_\sigma ^{\gamma -1}f(z)}{\mathcal {Q}_\sigma ^{\gamma }f(z)}+\frac{\sigma +\gamma -1}{\sigma +\gamma -2} \right) \prec \frac{1+A z}{1+B z}\qquad (\sigma>0,\,\gamma >2) \end{aligned}$$

then we have

$$\begin{aligned} \frac{\mathcal {Q}_\sigma ^{\gamma -1}f(z)}{\mathcal {Q}_\sigma ^{\gamma } f(z)}\prec \hbar (z) \prec \frac{1+A z}{1+B z}\qquad (z\in \Delta ) \end{aligned}$$

where

$$\begin{aligned} \hbar (z)=(1+Bz)^{-1}\left[ \,_2F_1\bigg (1,1;\sigma +\gamma -1;Bz/(1+Bz) \bigg )+\frac{(\sigma +\gamma -2) A z}{\sigma +\gamma -1} \,_2F_1\bigg (1,1;\sigma +\gamma ;Bz/(1+Bz)\bigg ) \right] \end{aligned}$$
(27)

and \(\hbar (z)\) is the best dominant. Furthermore,

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{\gamma -1}f(z)}{\mathcal {Q}_\sigma ^{\gamma } f(z)} \right) >\eta \end{aligned}$$

where

$$\begin{aligned} \eta =(1-B)^{-1}\left[ \,_2F_1\bigg (1,1;\sigma +\gamma -1;B/(B-1)\bigg ) -\frac{(\sigma +\gamma -2) A }{\sigma +\gamma -1} \,_2F_1\bigg (1,1;\sigma +\gamma ;B/(B-1)\bigg ) \right] . \end{aligned}$$
(28)

Proof

Suppose that

$$\begin{aligned} q(z)= \frac{\mathcal {Q}_\sigma ^{\gamma -1}f(z)}{\mathcal {Q}_\sigma ^{\gamma } f(z)}, \end{aligned}$$
(29)

then \(q(z)=1+a_1 z+a_2 z^2+...\) is analytic in \(\Delta\) with \(q(0)=1\). Using the logarithmic differentiation of the both sides of (29) with respect to z, and with the aid of the identities (6), we get

$$\begin{aligned} \left( \frac{1}{\sigma +\gamma -2} \right) \frac{z q'(z)}{ q(z)}= \frac{\mathcal {Q}_\sigma ^{\gamma -2}f(z)}{\mathcal {Q}_\sigma ^{\gamma -1} f(z)}-\frac{\sigma +\gamma -1}{\sigma +\gamma -2}\frac{\mathcal {Q}_\sigma ^{\gamma -1}f(z)}{\mathcal {Q}_\sigma ^{\gamma } f(z)}+\frac{1}{\sigma +\gamma -2} \end{aligned}$$
(30)

By using (29) and (30), we obtain

$$\begin{aligned} \frac{\mathcal {Q}_\sigma ^{\gamma -1}f(z)}{\mathcal {Q}_\sigma ^{\gamma } f(z)}\left( \frac{\mathcal {Q}_\sigma ^{\gamma -2}f(z)}{\mathcal {Q}_\sigma ^{\gamma -1} f(z)}-\frac{\sigma +\gamma -1}{\sigma +\gamma -2} \frac{\mathcal {Q}_\sigma ^{\gamma -1}f(z)}{\mathcal {Q}_\sigma ^{\gamma }f(z)}+\frac{\sigma +\gamma -1}{\sigma +\gamma -2} \right) =q(z)+\left( \frac{1}{\sigma +\gamma -2}\right) zq'(z). \end{aligned}$$

Thus, by using Lemma 1, for \(\delta =\sigma +\gamma -2\), the estimates (27) and (28) can be proved on the same lines as that of (16) and (17). This completes the proof of Theorem 2. \(\square\)

Letting \(\gamma =3-\sigma\) in Theorem 2 and using the identities (11) and (12), we have

Corollary 10

Let

$$\begin{aligned} \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)}\left( 2+ \frac{\mathcal {Q}_\sigma ^{1-\sigma }f(z)}{\mathcal {Q}_\sigma ^{2-\sigma } f(z)}-2 \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma }f(z)} \right) \prec \frac{1+A z}{1+B z}\qquad (0<\sigma <1) \end{aligned}$$

then we have

$$\begin{aligned} \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)}\prec \hbar (z) \prec \frac{1+A z}{1+B z}\qquad (z\in \Delta ) \end{aligned}$$

where \(\hbar (z)\) given as (21) and \(\hbar (z)\) is the best dominant. Furthermore,

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)} \right) >\eta \end{aligned}$$

where \(\eta\) given as (22).

Letting \(B\ne 0\) in Corollary 10, we have

Corollary 11

If

$$\begin{aligned} \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)}\left( 2+ \frac{\mathcal {Q}_\sigma ^{1-\sigma }f(z)}{\mathcal {Q}_\sigma ^{2-\sigma } f(z)}-2 \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma }f(z)} \right) \prec \frac{1+\frac{B\ln (1-B)}{B+\ln (1-B)} z}{1+B z}\qquad (0<\sigma <1) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)} \right) >0\qquad \qquad (z\in \Delta ). \end{aligned}$$

Letting \(B=-1\) in Corollary 11, we obtain the following special case

Example 4

If

$$\begin{aligned} \text {Re}\bigg ( \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)}\left( 2+ \frac{\mathcal {Q}_\sigma ^{1-\sigma }f(z)}{\mathcal {Q}_\sigma ^{2-\sigma } f(z)}-2 \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma }f(z)} \right) \bigg )> \frac{2\ln 2-1}{2\ln 2-2}\thickapprox -0.61\qquad (0<\sigma <1) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)} \right) >0\qquad \qquad (z\in \Delta ). \end{aligned}$$

Letting \(A=1-2\lambda ,\,(0\le \lambda <1)\) and \(B=-1\) in Corollary 10, we have

Corollary 12

If

$$\begin{aligned} \text {Re}\bigg ( \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)}\left( 2+ \frac{\mathcal {Q}_\sigma ^{1-\sigma }f(z)}{\mathcal {Q}_\sigma ^{2-\sigma } f(z)}-2 \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma }f(z)} \right) \bigg )>\lambda \qquad (0<\sigma <1) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)} \right) >(2\lambda -1)+2(1-\lambda )\ln 2. \end{aligned}$$

Letting \(\gamma =4-\sigma\) in Theorem 2 and using the identities (12) and (13), we have

Corollary 13

Let

$$\begin{aligned} \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)}\left( \frac{3}{2}+ \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)}-\frac{3}{2} \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma }f(z)} \right) \prec \frac{1+A z}{1+B z}\qquad (0<\sigma <2) \end{aligned}$$

then we have

$$\begin{aligned} \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)}\prec \hbar (z) \prec \frac{1+A z}{1+B z}\qquad (z\in \Delta ) \end{aligned}$$

where \(\hbar (z)\) given as (23) and \(\hbar (z)\) is the best dominant. Furthermore,

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)} \right) >\eta \end{aligned}$$

where \(\eta\) given as (24).

Letting \(B\ne 0\) in Corollary 13, we have

Corollary 14

If

$$\begin{aligned} \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)}\left( \frac{3}{2}+ \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)}-\frac{3}{2} \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma }f(z)} \right) \prec \frac{1+\frac{B\ln (1-B)}{B+\ln (1-B)} z}{1+B z}\qquad (0<\sigma <2) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)} \right) >0 \qquad \qquad (z\in \Delta ). \end{aligned}$$

Letting \(B=-1\) in Corollary 15, we obtain the following special case

Example 5

If

$$\begin{aligned} \text {Re}\bigg ( \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)}\left( \frac{3}{2}+ \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)}-\frac{3}{2} \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma }f(z)} \right) \bigg )> \frac{4\ln 2-3}{4 \ln 2-2}\thickapprox -0.29 \qquad (0<\sigma <2) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)} \right) >0 \qquad \qquad (z\in \Delta ). \end{aligned}$$

Letting \(A=1-2\lambda ,\,(0\le \lambda <1)\) and \(B=-1\) in Corollary 13, we have

Corollary 15

If

$$\begin{aligned} \text {Re}\bigg ( \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)}\left( \frac{3}{2}+ \frac{\mathcal {Q}_\sigma ^{2-\sigma }f(z)}{\mathcal {Q}_\sigma ^{3-\sigma } f(z)}-\frac{3}{2} \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma }f(z)} \right) \bigg )>\lambda \qquad (0<\sigma <2) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)} \right) >(2\lambda -1)-4(1-\lambda )(\ln 2-1). \end{aligned}$$

Letting \(\gamma =5-\sigma\) in Theorem 2 and using the identities (13) and (14), we have

Corollary 16

Let

$$\begin{aligned} \frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma } f(z)}\left( \frac{4}{3}+ \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)}-\frac{4}{3} \frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma }f(z)} \right) \prec \frac{1+A z}{1+B z}\qquad (0<\sigma <3) \end{aligned}$$

then we have

$$\begin{aligned} \frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma } f(z)}\prec \hbar (z) \prec \frac{1+A z}{1+B z}\qquad (z\in \Delta ) \end{aligned}$$

where \(\hbar (z)\) given as (25) and \(\hbar (z)\) is the best dominant. Furthermore,

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma } f(z)} \right) >\eta \end{aligned}$$

where given as (26).

Letting \(B\ne 0\) in Corollary 16, we have

Corollary 17

If

$$\begin{aligned} \frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma } f(z)}\left( \frac{4}{3}+ \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)}-\frac{4}{3} \frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma }f(z)} \right) \prec \frac{1+\frac{B\ln (1-B)}{B+\ln (1-B)} z}{1+B z}\qquad (0<\sigma <3) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma } f(z)} \right) >0\qquad \qquad (z\in \Delta ). \end{aligned}$$

Letting \(B=-1\) in Corollary 17, we obtain the following special case

Example 6

If

$$\begin{aligned} \text {Re} \bigg (\frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma } f(z)}\left( \frac{4}{3}+ \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)}-\frac{4}{3} \frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma }f(z)} \right) \bigg )> \frac{12 \ln 2-19}{12\ln 2 -20}\thickapprox 0.91\qquad (0<\sigma <3) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma } f(z)} \right) >0\qquad \qquad (z\in \Delta ). \end{aligned}$$

Letting \(A=1-2\lambda ,\,(0\le \lambda <1)\) and \(B=-1\) in Corollary 16, we have

Corollary 18

If

$$\begin{aligned} \text {Re} \bigg (\frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma } f(z)}\left( \frac{4}{3}+ \frac{\mathcal {Q}_\sigma ^{3-\sigma }f(z)}{\mathcal {Q}_\sigma ^{4-\sigma } f(z)}-\frac{4}{3} \frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma }f(z)} \right) \bigg )>\lambda \qquad (0<\sigma <3) \end{aligned}$$

then

$$\begin{aligned} \text {Re}\left( \frac{\mathcal {Q}_\sigma ^{4-\sigma }f(z)}{\mathcal {Q}_\sigma ^{5-\sigma } f(z)} \right) > (2\lambda -1)+3(1-\lambda )(2\ln 2-3). \end{aligned}$$

Conclusion

The purpose of the current work is to demonstrate various subordination characteristics for analytical meromorphic functions in \(\Delta ^*=\{z:0<|z|<1\}\). Lashin [1] defined and studied the integral operators \(\mathcal {P}_\sigma ^\gamma\) and \(\mathcal {Q}_\sigma ^\gamma\) on the meromorphic functions. We use these operators to study and demonstrate some subordination characteristics for meromorphic functions. In addition, we obtain some particular cases and numerical examples of our main results.

Availability of data and materials

During the current study the data sets are derived arithmetically.

References

  1. Lashin, A.Y.: On certain subclasses of meromorphic functions associated with certain integral operators. Comput. Math. Appl. 59, 524–531 (2010). https://doi.org/10.1016/j.camwa.2009.06.015

    Article  MathSciNet  MATH  Google Scholar 

  2. Duren P.L.: Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259. Springer, New York (1983)

  3. Bulboacâ, T.: Differential Subordinations and Superordinations: Recent Results. House of Scientific Book Publishing, Cluj-Napoca (2005)

    Google Scholar 

  4. Miller, S.S., Mocanu, P.T.: Differential Subordinations: Theory and Applications. Marcel Dekker Incorporated, New York (2000)

    Book  MATH  Google Scholar 

  5. Kumar, V., Shukla, S.L.: Certain integrals for classes of p-valent meromorphic functions. Bull. Austral. Math. Soc. 25, 35–97 (1982). https://doi.org/10.1017/S0004972700005062

    Article  MathSciNet  MATH  Google Scholar 

  6. Hallenbeck, D.J., Ruscheweyh, S.T.: Subordination by convex functions. Proc. Am. Math. Soc. 52, 191–195 (1975). https://doi.org/10.1090/S0002-9939-1975-0374403-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Miller, S.S., Mocanu, P.T.: Differential subordination and univalent functions. Michigan Math. J. 28, 157–171 (1981). https://doi.org/10.1307/mmj/1029002507

    Article  MathSciNet  MATH  Google Scholar 

  8. Abramowitz, M., Stegun, I.A.: Hand Book of Mathematical functions. Dover Publications, Inc., New York (1971)

    Google Scholar 

  9. Whittaker, E.T., Watson, G.N.: A Course on Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With An Account of the Principal Transcendental Functions, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the referees for their valuable comments, which helped improve the manuscript.

Funding

This research work is not funded.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to W. Y. Kota.

Ethics declarations

Competing interests

The authors do not have competing for any interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kota, W.Y., El-Ashwah, R.M. Some properties for meromorphic functions associated with integral operators. J Egypt Math Soc 31, 5 (2023). https://doi.org/10.1186/s42787-023-00163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s42787-023-00163-4

Keywords

Mathematics Subject Classification