Skip to main content

Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations

Abstract

In this article, we study the existence result for a boundary value problem (BVP) of hybrid fractional sequential integro-differential equations. A fixed point theorem provided by Dhage in (Nonlinear Anal. 4:414–424, 2010) is used for the solution existence of our boundary value problem. Also we illustrated our result through an example.

1 Introduction

Fractional calculus is a branch of mathematics which investigates the properties of integrals and derivatives of non-integer order. These integrals and derivatives of non-integer order are called fractional integrals and derivatives. The potential of fractional calculus has drawn the attention of applied scientists, engineers, and other researchers. Also theoretical scientists or researchers are interested in the field of fractional derivatives and fractional integration. Chronologically, in [2] we can find different approaches of fractional calculus proposed by Liouville, Euler, Fourier, Riemann, Abel, etc. We can find some relevant work on fractional calculus in a series of papers [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28].

In the area of fractional calculus, several researchers have studied hybrid fractional differential equations, see [1, 29,30,31,32] and the references therein. Recently in [33], the authors developed an existence result for a boundary value problem of hybrid fractional differential equations of the form

$$ \textstyle\begin{cases} D^{\alpha } (\frac{\phi (t)-\psi (t,\phi (t))}{\theta (t,\phi (t))} )= \varphi (t,\phi (t)), \quad t\in [0,1],\alpha \in (1,2], \\ [\frac{ \phi (t)-\psi (t,\phi (t))}{\theta (t,\phi (t))} ]| _{t=0}=0, \quad\quad [\frac{\phi (t)-\psi (t,\phi (t))}{\theta (t,\phi (t))} ]| _{t=1}=0, \end{cases} $$

where \(\theta \in C(\mathbb{J}\times \mathbb{R}, \mathbb{R}\setminus \{0\})\), \(\psi , \varphi \in C(\mathbb{J}\times \mathbb{R}, \mathbb{R})\).

In [34], Sitho derived an existence result for an initial value problem of hybrid fractional sequential integro-differential equations of the form

$$ \textstyle\begin{cases} D^{\alpha } [\frac{D^{\omega }u(t)-\sum_{i=1}^{m}I^{\beta _{i}}f _{i}(t,u(t))}{g(t,u(t))} ]= h(t,u(t),I^{\gamma }u(t)), \quad t\in [0,T], \\ u(0)=0, \quad\quad D^{\omega }u(0)=0, \end{cases} $$
(1)

where \(D^{\alpha }\), \(D^{\omega }\) denote the Riemann–Liouville fractional derivatives of order α, ω respectively and \(0<\alpha ,\omega \leq 1\).

In this article, we study the existence result for the boundary value problem of hybrid fractional sequential integro-differential equations involving Caputo derivatives given by

$$ \textstyle\begin{cases} {} ^{c}D^{\alpha } [\frac{^{c}D^{\omega }u(t)-\sum_{i=1}^{m}I^{ \beta _{i}}f_{i}(t,u(t))}{g(t,u(t))} ] = h(t,u(t),I^{\gamma } u(t)), \quad t\in \mathbb{J}=[0,1], \\ u(0)=0, \quad\quad D^{\omega } u(0)=0, \quad\quad u(1)=\delta u(\eta ), \quad 0< \delta < 1, 0< \eta < 1, \end{cases} $$
(2)

where \(^{c}D^{\alpha }\) is the Caputo fractional derivative of order α, \(^{c}D^{\omega }\) is the Caputo fractional derivative of order ω, \(0<\alpha \leq 1\), \(1<\omega \leq 2\), \(I^{\gamma }\) denotes the Riemann–Liouville fractional integral of order \(\gamma > 0\), \(I^{\beta _{i}}\) denotes the Riemann–Liouville fractional sequential integrals of order \(\beta _{i} > 0\), \(g \in C(\mathbb{J} \times \mathbb{R}, \mathbb{R}\setminus \{0\})\), \(h \in C(\mathbb{J} \times \mathbb{R}^{2}, \mathbb{R})\) and \(f_{i} \in C(\mathbb{J}\times \mathbb{R}, \mathbb{R})\) with \(f_{i}(0,0)=0\), \(i=1,2,\ldots,m\).

In comparison to problem (1), our considered BVP (2) is more general than the problem studied in [34], as we consider a problem with three point boundary conditions, while the authors in [34] investigated an initial value problem. Moreover, in our problem the fractional orders of derivatives are \(0<\alpha \leq 1\) and \(1<\omega \leq 2\), whereas in problem (1) the fractional orders are \(0<\alpha ,\omega \leq 1\).

We obtain an existence result for the boundary value problem (2) in Sect. 3 by using generalized Krasnoselskii’s fixed point theorem provided by Dhage in [1].

2 Preliminaries

This section provides some important definitions of fractional calculus [2, 35, 36] and results of fixed point theory [1, 20, 21], which is base for the forthcoming sections.

Definition 1

The Caputo fractional derivative of positive real order \(\omega >0\) of a function \(u(t)\) is given by

$$ ^{c}D^{\omega } u(t)=\frac{1}{\varGamma (n-\omega )} \int _{0}^{t} \frac{u ^{(n)}(s)}{(t-s)^{\omega -n+1}}\,ds, \quad \omega >0, $$

provided that the integral on the right-hand side exists.

Definition 2

The Riemann–Liouville fractional derivative of positive real order \(\omega >0\) of a function \(u(t)\) is given by

$$ D^{\omega } u(t)=\frac{1}{\varGamma (n-\omega )}\frac{d^{n}}{dt^{n}} \int _{0}^{t}\frac{u(s)}{(t-s)^{\omega -n+1}}\,ds, \quad \omega >0, $$

provided that the integral on the right-hand side exists.

Definition 3

The Riemann–Liouville fractional integral of positive real order \(\omega >0\) of a function \(u(t)\) is given by

$$ I^{\omega }u(t)=\frac{1}{\varGamma (\omega )} \int _{0}^{t}(t-s)^{\omega -1}u(s) \,ds, \quad \omega >0, $$

provided that the integral on the right-hand side exists.

Remark 1

For Definitions 13, \(n=[\omega ]+1\), \([\omega ]\) is the greatest integer less than ω and Γ is the gamma function defined by \(\varGamma (\omega )=\int _{0}^{\infty }e^{-s} s^{ \omega -1} \,ds\).

Property 1

([36])

Let \(\beta , \omega >0\) and \(u(t)\) be a function, then the semi-group property for the Riemann–Liouville fractional integrals of orders β and ω respectively is given by

$$ I^{\beta }\bigl[I^{\omega }u(t)\bigr] = I^{\beta + \omega }u(t). $$

Next we present two important results as lemmas which we need later.

Lemma 1

([37])

For \(u\in C(0,T)\cap L(0,T) \), the solution of the Caputo fractional differential equation

$$ ^{c}D^{\omega }u(t)=g(t), \quad n-1< \omega < n, $$

is given by

$$ u(t) = I^{\omega }g(t)+\sum_{i=0}^{n-1}k_{i} t^{i}, $$

or

$$ u(t) = I^{\omega }g(t) + k_{0} + k_{1}t+\cdots +k_{n-1}t, $$

where \(n=[\omega ]+1\), \([\omega ]\) is the greatest integer less than ω.

Let \(E=C(\mathbb{J},\mathbb{R})\) be the Banach space of continuous real-valued functions defined on \(\mathbb{J}=[0,1]\). We define a norm \(\lVert \cdot \rVert \) and a multiplication in E by \(\Vert u \Vert =\sup_{t\in \mathbb{J}} \vert u(t) \vert \) and \((u v)(t)=u(t)v(t)\), \(\forall t \in \mathbb{J}\). Then clearly E is a Banach algebra with above defined supremum norm and multiplication in it.

Lemma 2

([1])

Let S be a nonempty, convex, closed, and bounded set such that \(S \subseteq E\), and let \(A:E\rightarrow E\) and \(B:S\rightarrow E\) be two operators which satisfy the following:

\((c_{1})\) :

A is contraction,

\((c_{2})\) :

B is compact, and

\((c_{3})\) :

\(u = Au + Bv\) \(\forall v \in S \implies u \in S\).

Then there exists a solution of the operator equation \(u=Au + Bu\).

3 Solution existence of hybrid fractional sequential integro-differential equations

In this section, we consider the hybrid fractional sequential integro-differential equation boundary value problem (2). First we derive its solution and then discuss the existence of solution using the above stated definitions and results of the preliminary section.

Lemma 3

Suppose that \(0<\alpha \leq 1\), \(1<\omega \leq 2\), \(\gamma >0\), and functions g, h, \(f_{i}\), \(i=1,2,\ldots,m\), satisfy BVP (2). Then the unique solution of BVP (2) is given by

$$\begin{aligned} u(t) &= \int _{0}^{t}\frac{(t-s)^{\omega -1}}{\varGamma (\omega )}g\bigl(s,u(s)\bigr) \int _{0}^{s}\frac{(s-\mu )^{\alpha -1}}{\varGamma (\alpha )}h\bigl(\mu ,u( \mu ),I^{\gamma }u(\mu )\bigr)\,d\mu \,ds \\ &\quad{} + \sum_{i=1}^{m} I^{\beta _{i}+\omega }f_{i}\bigl(t,u(t)\bigr) \\ &\quad {} + \frac{t}{\delta \eta -1} \Biggl[ \int _{0}^{1}\frac{(1-s)^{\omega -1}}{ \varGamma (\omega )}g\bigl(s,u(s)\bigr) \int _{0}^{s}\frac{(s-\mu )^{\omega -1}}{ \varGamma (\alpha )}h\bigl(\mu ,u(\mu ),I^{\gamma }u(\mu )\bigr)\,d\mu \,ds \\ &\quad{}+ \sum_{i=1} ^{m} I^{\beta _{i}+\omega }f_{i}\bigl(1,u(1)\bigr) \\ & \quad {} -\delta \Biggl( \int _{0}^{\eta }\frac{(\eta -s)^{\omega -1}}{\varGamma (\omega )}g\bigl(s,u(s)\bigr) \int _{0}^{s}\frac{(s-\mu )^{\omega -1}}{\varGamma ( \alpha )}h\bigl(\mu ,u(\mu ),I^{\gamma }u(\mu )\bigr)\,d\mu \,ds \\ &\quad{}+ \sum_{i=1}^{m} I ^{\beta _{i}+\omega }f_{i}\bigl(\eta ,u(\eta )\bigr) \Biggr) \Biggr], \end{aligned}$$
(3)

where

$$\begin{aligned}& I^{\beta _{i}+\omega }f_{i}\bigl(t,u(t)\bigr) = \int _{0}^{t}\frac{(t-s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u(s)\bigr)\,ds, \\& I^{\beta _{i}+\omega }f_{i}\bigl(1,u(1)\bigr) = \int _{0}^{1}\frac{(1-s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u(s)\bigr)\,ds, \end{aligned}$$

and

$$ I^{\beta _{i}+\omega }f_{i}\bigl(\eta ,u(\eta )\bigr) = \int _{0}^{\eta }\frac{( \eta -s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u(s)\bigr)\,ds. $$

Proof

Assigning the Riemann–Liouville fractional integral operator of order α to hybrid fractional sequential integro-differential equations (2) and using Lemma 1, we have

$$ \frac{^{c}D^{\omega }u(t)-\sum_{i=1}^{m}I^{\beta _{i}}f_{i}(t,u(t))}{g(t,u(t))}= I^{\alpha }h\bigl(t,u(t),I^{\gamma }u(t) \bigr) + k_{0}. $$
(4)

In view of the initial conditions \(u(0)=0\), \(D^{\omega }u(0)=0\) of problem (2) with \(f_{i}(0,0)=0\), we have \(k_{0} = 0\), and then equation (4) takes the form

$$ ^{c}D^{\omega }u(t) = g\bigl(t,u(t)\bigr) \int _{0}^{t}\frac{(t-s)^{\alpha -1}}{ \varGamma (\alpha )}h \bigl(s,u(s),I^{\gamma }u(s)\bigr)\,ds + \sum_{i=1}^{m}I^{\beta _{i}}f_{i} \bigl(t,u(t)\bigr). $$
(5)

Now assigning the Riemann–Liouville fractional integral operator of order ω to equation (5) and using Lemma 1 with semi-group Property 1, we have

$$ \begin{aligned}[b] u(t)& = \int _{0}^{t}\frac{(t-s)^{\omega -1}}{\varGamma (\omega )}g\bigl(s,u(s)\bigr) \int _{0}^{s}\frac{(s-\mu )^{\alpha -1}}{\varGamma (\alpha )}h\bigl(\mu ,u( \mu ),I^{\gamma }u(\mu )\bigr)\,d\mu \,ds \\ &\quad{} + \sum_{i=1}^{m} I^{\beta _{i}+\omega }f_{i}\bigl(t,u(t)\bigr) + k_{1}+k_{2}t.\end{aligned} $$
(6)

The initial condition \(u(0)=0\) of problem (2) gives \(k_{1} = 0\), for which equation (6) becomes

$$ \begin{aligned}[b] u(t) &= \int _{0}^{t}\frac{(t-s)^{\omega -1}}{\varGamma (\omega )}g\bigl(s,u(s)\bigr) \int _{0}^{s}\frac{(s-\mu )^{\alpha -1}}{\varGamma (\alpha )}h\bigl(\mu ,u( \mu ),I^{\gamma }u(\mu )\bigr)\,d\mu \,ds \\ &\quad{} + \sum_{i=1}^{m} I^{\beta _{i}+\omega }f_{i}\bigl(t,u(t)\bigr)+k_{2}t,\end{aligned} $$
(7)

and then the boundary condition \(u(1)=\delta u(\eta )\) of problem (2) gives

$$ \begin{aligned} k_{2} &= \frac{1}{\delta \eta -1} \Biggl[ \int _{0}^{1}\frac{(1-s)^{ \omega -1}}{\varGamma (\omega )}g\bigl(s,u(s)\bigr) \int _{0}^{s}\frac{(s-\mu )^{ \omega -1}}{\varGamma (\alpha )}h\bigl(\mu ,u(\mu ),I^{\gamma }u(\mu )\bigr)\,d \mu \,ds \\ & \quad{}+ \sum_{i=1}^{m} I^{\beta _{i}+\omega }f_{i}\bigl(1,u(1)\bigr) \\ & \quad{} -\delta \Biggl( \int _{0}^{\eta }\frac{(\eta -s)^{\omega -1}}{\varGamma (\omega )}g\bigl(s,u(s)\bigr) \int _{0}^{s}\frac{(s-\mu )^{\omega -1}}{\varGamma ( \alpha )}h\bigl(\mu ,u(\mu ),I^{\gamma }u(\mu )\bigr)\,d\mu \,ds \\ & \quad{}+ \sum_{i=1}^{m} I ^{\beta _{i}+\omega }f_{i}\bigl(\eta ,u(\eta )\bigr) \Biggr) \Biggr], \end{aligned} $$

for which equation (7) takes the form

$$ \begin{aligned} u(t) ={}& \int _{0}^{t}\frac{(t-s)^{\omega -1}}{\varGamma (\omega )}g\bigl(s,u(s)\bigr) \int _{0}^{s}\frac{(s-\mu )^{\alpha -1}}{\varGamma (\alpha )}h\bigl(\mu ,u( \mu ),I^{\gamma }u(\mu )\bigr)\,d\mu \,ds \\ & \quad{}+ \sum_{i=1}^{m} I^{\beta _{i}+\omega }f_{i}\bigl(t,u(t)\bigr) \\ & {} + \frac{t}{\delta \eta -1} \Biggl[ \int _{0}^{1}\frac{(1-s)^{\omega -1}}{ \varGamma (\omega )}g\bigl(s,u(s)\bigr) \int _{0}^{s}\frac{(s-\mu )^{\omega -1}}{ \varGamma (\alpha )}h\bigl(\mu ,u(\mu ),I^{\gamma }u(\mu )\bigr)\,d\mu \,ds \\ & \quad{}+ \sum_{i=1} ^{m} I^{\beta _{i}+\omega }f_{i}\bigl(1,u(1)\bigr) \\ & {} -\delta \Biggl( \int _{0}^{\eta }\frac{(\eta -s)^{\omega -1}}{\varGamma (\omega )}g\bigl(s,u(s)\bigr) \int _{0}^{s}\frac{(s-\mu )^{\omega -1}}{\varGamma ( \alpha )}h\bigl(\mu ,u(\mu ),I^{\gamma }u(\mu )\bigr)\,d\mu \,ds \\ & \quad{}+ \sum_{i=1}^{m} I ^{\beta _{i}+\omega }f_{i}\bigl(\eta ,u(\eta )\bigr) \Biggr) \Biggr]. \end{aligned} $$

Hence we obtain the unique solution of BVP (2). Thus the proof is completed. □

For developing the existence result, we consider some assumptions which are the following.

\((A_{1})\) :

The functions \(f_{i} \in C(\mathbb{J}\times \mathbb{R}, \mathbb{R})\), \(g \in C(\mathbb{J}\times \mathbb{R}, \mathbb{R}\setminus \{0\})\), and \(h \in C(\mathbb{J}\times \mathbb{R}^{2}, \mathbb{R})\) are continuous, and there exist positive functions \(\lambda _{i}(t)\), \(\varTheta (t)\), and \(\psi (t)\) with bounds \(\Vert \lambda _{i} \Vert \), \(\Vert \varTheta \Vert \), and \(\Vert \psi \Vert \) respectively such that

$$\begin{aligned}& \bigl\vert f_{i}\bigl(t,u(t)\bigr)-f_{i}(t,v(t) \bigr\vert \leq \lambda _{i}(t) \bigl\vert u(t)-v(t) \bigr\vert , \\& \bigl\vert g\bigl(t,u(t)\bigr)-g(t,v(t) \bigr\vert \leq \varTheta (t) \bigl\vert u(t)-v(t) \bigr\vert , \\& \text{and} \quad \bigl\vert h\bigl(t,u(t),\bar{u}(t)\bigr)-h(t,v(t),\bar{v}(t) \bigr\vert \leq \psi (t) \bigl( \bigl\vert u(t)-v(t) \bigr\vert + \bigl\vert \bar{u}(t)-\bar{v}(t) \bigr\vert \bigr) \end{aligned}$$

for \(t\in \mathbb{J}\) and \(u,v\in \mathbb{R}\).

\((A_{2})\) :

\(\vert f_{i}(t,u) \vert \leq \phi _{i}(t)\), \(\forall (t,u) \in \mathbb{J} \times \mathbb{R}\), \(\phi _{i} \in C(\mathbb{J}, \mathbb{R}_{+})\), \(i = 1, 2, 3,\ldots, m\), \(\vert h(t,u,v) \vert \leq \varOmega (t)\), \(\forall (t,u,v)\in \mathbb{J} \times \mathbb{R} \times \mathbb{R}\), \(\varOmega \in C(\mathbb{J},\mathbb{R}_{+})\), \(\vert g(t,u) \vert \leq \chi (t)\), \(\forall (t,u)\in \mathbb{J} \times \mathbb{R}\), \(\chi \in C(\mathbb{J},\mathbb{R}_{+})\).

\((A_{3})\) :

There exists \(r>0\) such that

$$ \biggl(1+\frac{1+\delta }{ \vert \delta \eta -1 \vert } \biggr) \Biggl[\frac{ \Vert \chi \Vert \Vert \varOmega \Vert }{\varGamma (\alpha +1)\varGamma (\omega +1)} + \sum _{i=1} ^{m}\frac{ \Vert \phi _{i} \Vert }{\varGamma (\beta _{i}+\omega +1)} \Biggr] \leq r $$

and

$$ \biggl(1+\frac{1+\delta }{ \vert \delta \eta -1 \vert } \biggr) \biggl[\frac{ \Vert \varOmega \Vert \Vert \varTheta \Vert + \Vert \chi \Vert \Vert \psi \Vert }{\varGamma (\alpha +1) \varGamma (\omega +1)} + \frac{ \Vert \chi \Vert \Vert \psi \Vert }{\varGamma (\alpha +1) \varGamma (\omega +1)\varGamma (\gamma +1)} \biggr]< 1. $$
(8)

Our main existence result is based on generalized Krasnoselikii’s fixed point theorem by Dhage [1], which we have provided in Lemma 2.

Theorem 2

Let assumptions \((A_{1})\)\((A_{3})\) hold, then there exists at least one solution for BVP (2) in \(\mathbb{J}=[0,1]\).

Proof

First we set \(\sup_{t\in \mathbb{J}} \vert \phi _{i}(t) \vert = \Vert \phi _{i} \Vert \), \(\sup_{t\in \mathbb{J}} \vert \lambda _{i}(t) \vert = \Vert \lambda _{i} \Vert \), \(i = 1, 2,\ldots, m\), \(\sup_{t\in \mathbb{J}} \vert \varTheta (t) \vert = \Vert \varTheta \Vert \), \(\sup_{t\in \mathbb{J}} \vert \psi (t) \vert = \Vert \psi \Vert \), \(\sup_{t\in \mathbb{J}} \vert \varOmega (t) \vert = \Vert \varOmega \Vert \), and \(\sup_{t\in \mathbb{J}} \vert \chi (t) \vert = \Vert \chi \Vert \).

Now we consider \(E=C(\mathbb{J},\mathbb{R})\) and define \(S\subseteq E\) as

$$ S=\bigl\{ u\in E: \Vert u \Vert \leq r\bigr\} . $$

Clearly S is a closed, convex, and bounded subset of the Banach space E. Let us define two operators \(C:E\longrightarrow E\) and \(D:E\longrightarrow E\) such that

$$ Cu(t) = \int _{0}^{t}\frac{(t-s)^{\alpha -1}}{\varGamma (\alpha )}h\bigl(s,u(s),I ^{\gamma }u(t)\bigr)\,ds $$

and

$$ Du(t)=g\bigl(t,u(t)\bigr). $$

Then, using assumptions \((A_{1})\), \((A_{2})\) and proceeding with maximum over \(\mathbb{J}\), we have

$$\begin{aligned}& \bigl\Vert Cu(t)-Cv(t) \bigr\Vert \leq \frac{ \Vert \psi \Vert }{\varGamma (\alpha +1)} \biggl(1+ \frac{1}{ \varGamma (\gamma +1)} \biggr) \Vert u - v \Vert , \end{aligned}$$
(9)
$$\begin{aligned}& \bigl\Vert Du(t)-Dv(t) \bigr\Vert \leq \Vert \varTheta \Vert \Vert u-v \Vert , \end{aligned}$$
(10)
$$\begin{aligned}& \bigl\Vert Cu(t) \bigr\Vert \leq \frac{ \Vert \varOmega \Vert }{\varGamma (\alpha +1)} \end{aligned}$$
(11)
$$\begin{aligned}& \text{and} \quad \bigl\Vert Du(t) \bigr\Vert \leq \Vert \chi \Vert . \end{aligned}$$
(12)

Now we define two more operators \(A:E\longrightarrow E\) and \(B:S\longrightarrow E\) such that

$$ \begin{aligned}[b] Au(t) ={} & \int _{0}^{t}\frac{(t-s)^{\omega -1}}{\varGamma (\omega )}Du(s)Cu(s)\,ds + \frac{t}{ \delta \eta -1} \int _{0}^{1}\frac{(1-s)^{\omega -1}}{\varGamma (\omega )}Du(s)Cu(s)\,ds \\ &{}- \frac{\delta t}{\delta \eta -1} \int _{0}^{\eta }\frac{(\eta -s)^{ \omega -1}}{\varGamma (\omega )}Du(s)Cu(s)\,ds , \quad t\in \mathbb{J} \end{aligned} $$
(13)

and

$$ \begin{aligned} Bu(t)& = \sum_{i=1}^{m} I^{\beta _{i}+\omega }f_{i} \bigl(t,u(t)\bigr) + \frac{t}{ \delta \eta -1}\sum_{i=1}^{m} I^{\beta _{i}+\omega }f_{i}\bigl(1,u(1)\bigr) \\ &\quad{} - \frac{ \delta t}{\delta \eta -1}\sum _{i=1}^{m} I^{\beta _{i}+\omega }f_{i} \bigl( \eta ,u(\eta )\bigr) , \quad t\in \mathbb{J}, \end{aligned} $$

or

$$\begin{aligned} \begin{aligned}[b] Bu(t) ={} & \sum_{i=1}^{m} \int _{0}^{t}\frac{(t-s)^{\beta _{i}+\omega -1}}{ \varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u(s)\bigr)\,ds + \frac{t}{\delta \eta -1} \sum_{i=1}^{m} \int _{0}^{1}\frac{(1-s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u(s)\bigr)\,ds \\ &{}- \frac{\delta t}{\delta \eta -1} \sum_{i=1}^{m} \int _{0}^{\eta }\frac{(\eta -s)^{\beta _{i}+ \omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u(s)\bigr)\,ds, \quad t\in J. \end{aligned} \end{aligned}$$
(14)

Then the integral equation (3) can be written in the operator form as follows:

$$ u(t)=Au(t)+Bu(t), \quad t\in J. $$
(15)

We show that the two operators A and B in (15) satisfy all the conditions of Lemma 2. This can be achieved in the following steps.

Step 1. First we show that A is a contraction mapping. Let \(u(t), v(t)\in S\), then we have

$$\begin{aligned}& \bigl\vert Au(t)-Av(t) \bigr\vert \\& \quad \leq \int _{0}^{t}\frac{(t-s)^{\omega -1}}{\varGamma ( \omega )} \bigl\vert Du(s)Cu(s)-Dv(s)Cv(s) \bigr\vert \,ds \\& \quad \quad {} + \frac{t}{ \vert \delta \eta -1 \vert } \int _{0}^{1}\frac{(1-s)^{\omega -1}}{ \varGamma (\omega )} \bigl\vert Du(s)Cu(s)-Dv(s)Cv(s) \bigr\vert \,ds \\& \quad \quad {} + \frac{\delta t}{ \vert \delta \eta -1 \vert } \int _{0}^{\eta }\frac{(\eta -s)^{ \omega -1}}{\varGamma (\omega )} \bigl\vert Du(s)Cu(s)-Dv(s)Cv(s) \bigr\vert \,ds \\& \quad \leq \biggl(1+\frac{1}{ \vert \delta \eta -1 \vert }+\frac{\delta }{ \vert \delta \eta -1 \vert } \biggr) \int _{0}^{1} \frac{(1-s)^{\omega -1}}{\varGamma (\omega )} \bigl\vert Du(s)Cu(s)-Dv(s)Cv(s) \bigr\vert \,ds \\& \quad \leq \biggl(1+\frac{1+\delta }{ \vert \delta \eta -1 \vert } \biggr) \biggl[ \int _{0}^{1}\frac{(1-s)^{\omega -1}}{\varGamma (\omega )} \bigl\vert Du(s)Cu(s)-Cu(s)Dv(s) \\& \quad \quad {} + Cu(s)Dv(s)- Dv(s)Cv(s) \bigr\vert \,ds \biggr] \\ & \quad \leq \biggl(1+\frac{1+\delta }{ \vert \delta \eta -1 \vert } \biggr) \biggl[ \int _{0}^{1}\frac{(1-s)^{\omega -1}}{\varGamma (\omega )} \bigl\vert Cu(s) \bigr\vert \bigl\vert Du(s)-Dv(s) \bigr\vert \,ds \\ & \quad \quad {} + \int _{0}^{1}\frac{(1-s)^{\omega -1}}{\varGamma (\omega )} \bigl\vert Dv(s) \bigr\vert \bigl\vert Cu(s)-Cv(s) \bigr\vert \,ds \biggr], \end{aligned}$$

which gives

$$\begin{aligned} \bigl\Vert Au(t)-Av(t) \bigr\Vert &\leq \biggl(1+\frac{1+\delta }{ \vert \delta \eta -1 \vert } \biggr) \biggl[\frac{ \Vert \varOmega \Vert \Vert \varTheta \Vert + \Vert \chi \Vert \Vert \psi \Vert }{\varGamma (\alpha +1)\varGamma (\omega +1)} \\ &\quad{} + \frac{ \Vert \chi \Vert \Vert \psi \Vert }{\varGamma (\alpha +1)\varGamma (\omega +1)\varGamma (\gamma +1)} \biggr] \Vert u-v \Vert . \end{aligned}$$

Hence by (8) the operator A is a contraction mapping.

Step 2. Next we show that the operator B satisfies condition (\(c_{2}\)) of Lemma 2, that is, the operator B is compact on S. Therefore first we show that the operator B is continuous on S. Let \(\{u_{n}(t)\}\) be a sequence of functions in S converging to a function \(u(t)\in S\). Then, by the Lebesgue dominant convergence theorem, \(\forall t\in \mathbb{J}\), we have

$$\begin{aligned} \lim_{n\rightarrow \infty } Bu_{n}(t) =&\lim_{n\rightarrow \infty } \Biggl[\sum_{i=1}^{m} \int _{0}^{t}\frac{(t-s)^{\beta _{i}+\omega -1}}{ \varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u_{n}(s)\bigr)\,ds \\ & {} + \frac{t}{\delta \eta -1} \sum_{i=1}^{m} \int _{0}^{1}\frac{(1-s)^{ \beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u_{n}(s)\bigr)\,ds \\ & {} - \frac{\delta t}{\delta \eta -1} \sum_{i=1}^{m} \int _{0}^{\eta }\frac{( \eta -s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u _{n}(s)\bigr)\,ds \Biggr] \\ =& \sum_{i=1}^{m} \int _{0}^{t}\frac{(t-s)^{\beta _{i}+\omega -1}}{ \varGamma (\beta _{i}+\omega )}\lim _{n\rightarrow \infty }f_{i}\bigl(s,u_{n}(s)\bigr)\,ds \\ & {} + \frac{t}{\delta \eta -1}\sum_{i=1}^{m} \int _{0}^{1}\frac{(1-s)^{ \beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )} \lim _{n\rightarrow \infty }f_{i}\bigl(s,u_{n}(s)\bigr)\,ds \\ & {} - \frac{\delta t}{\delta \eta -1}\sum_{i=1}^{m} \int _{0}^{\eta }\frac{( \eta -s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )} \lim _{n\rightarrow \infty }f_{i}\bigl(s,u_{n}(s)\bigr)\,ds \\ =& \sum_{i=1}^{m} \int _{0}^{t}\frac{(t-s)^{\beta _{i}+\omega -1}}{ \varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u(s)\bigr)\,ds \\ &{}+ \frac{t}{\delta \eta -1} \sum_{i=1}^{m} \int _{0}^{1}\frac{(1-s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u(s)\bigr)\,ds \\ {} - &\frac{\delta t}{\delta \eta -1}\sum_{i=1}^{m} \int _{0}^{\eta }\frac{( \eta -s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u(s)\bigr)\,ds. \end{aligned}$$

Hence \(\lim_{n\rightarrow \infty } Bu_{n}(t)=Bu(t)\). Thus B is a continuous operator on S. Further, we show that the operator B is uniformly bounded on S. For any \(u\in S\), we have

$$\begin{aligned} \bigl\vert Bu(t) \bigr\vert \leq & \sum_{i=1}^{m} \int _{0}^{t}\frac{(t-s)^{\beta _{i}+ \omega -1}}{\varGamma (\beta _{i}+\omega )} \bigl\vert f_{i}\bigl(s,u(s)\bigr) \bigr\vert \,ds \\ &{}+ \frac{t}{ \vert \delta \eta -1 \vert } \sum _{i=1}^{m} \int _{0}^{1}\frac{(1-s)^{\beta _{i}+ \omega -1}}{\varGamma (\beta _{i}+\omega )} \bigl\vert f_{i}\bigl(s,u(s)\bigr) \bigr\vert \,ds \\ & {} + \frac{\delta t}{ \vert \delta \eta -1 \vert } \sum_{i=1}^{m} \int _{0}^{ \eta }\frac{(\eta -s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )} \bigl\vert f_{i}\bigl(s,u(s)\bigr) \bigr\vert \,ds \\ \leq & \biggl(1+\frac{1+\delta }{ \vert \delta \eta -1 \vert } \biggr) \sum_{i=1} ^{m}\frac{ \Vert \phi _{i} \Vert }{\varGamma (\beta _{i}+\omega +1)}:= M. \end{aligned}$$

Therefore \(\Vert Bu(t) \Vert \leq M\), \(\forall t\in \mathbb{J}\), which shows that B is uniformly bounded on S. Now, we show that the operator B is equi-continuous. Let \(t_{1},t_{2} \in \mathbb{J}\) with \(t_{1}< t_{2}\) and \(u(t)\in S\). Then we have

$$\begin{aligned} \bigl\vert Bu(t_{2})-Bu(t_{1}) \bigr\vert \leq & \Biggl\vert \sum_{i=1}^{m} \int _{0}^{t_{2}} \frac{(t_{2}-s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u(s)\bigr)\,ds \\ &{} -\sum_{i=1}^{m} \int _{0}^{t_{1}} \frac{(t _{1}-s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u(s)\bigr)\,ds \\ & {} + \frac{t_{2}-t_{1}}{\delta \eta -1} \sum_{i=1}^{m} \int _{0}^{1}\frac{(1-s)^{ \beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,u(s)\bigr)\,ds \\ & {} - \frac{\delta (t_{2}-t_{1})}{\delta \eta -1} \sum_{i=1}^{m} \int _{0}^{\eta }\frac{(\eta -s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+ \omega )}f_{i} \bigl(s,u(s)\bigr)\,ds \Biggr\vert \\ \leq & \sum_{i=1}^{m} \frac{ \Vert \phi _{i} \Vert }{\varGamma (\beta _{i}+\omega )} \Biggl\vert \int _{0}^{t _{1}} \bigl[(t_{2}-s)^{\beta _{i}+\omega -1}-(t_{1}-s)^{\beta _{i}+\omega -1} \bigr] \,ds \\ & {} + \int _{t_{1}}^{t_{2}} (t_{2}-s)^{\beta _{i}+\omega -1} \,ds + \frac{t _{2}-t_{1}}{\delta \eta -1} \sum_{i=1}^{m} \int _{0}^{1}(1-s)^{\beta _{i}+\omega -1}\,ds \\ & {} - \frac{\delta (t_{2}-t_{1})}{\delta \eta -1} \sum_{i=1}^{m} \int _{0}^{\eta }(\eta -s)^{\beta _{i}+\omega -1}\,ds \Biggr\vert \\ \leq & \sum_{i=1}^{m} \frac{ \Vert \phi _{i} \Vert }{\varGamma (\beta _{i}+\omega +1)} \biggl\vert t_{2}^{\beta _{i}+\omega }-t_{1}^{\beta _{i}+\omega }+(t_{2}-t_{1})^{\beta _{i}+ \omega } \\ &{}+ \frac{t_{2}-t_{1}}{\delta \eta -1}-\frac{\delta \eta ^{\beta _{i}+\omega }(t_{2}-t_{1})}{\delta \eta -1} \biggr\vert . \end{aligned}$$

Now as \(t_{2}-t_{1}\longrightarrow 0\), so the right-hand side tends to zero. Thus B is equi-continuous. Therefore, it follows from the Arzelá–Ascoli theorem that B is a compact operator on S.

Step 3. Condition \((c_{3})\) of Lemma 2 holds. So, for any \(v\in S\), we have

$$\begin{aligned} \bigl\vert u(t) \bigr\vert =& \bigl\vert Au(t)+Bv(t) \bigr\vert \\ \leq & \bigl\vert Au(t) \bigr\vert + \bigl\vert Bv(t) \bigr\vert \\ \leq & \biggl\vert \int _{0}^{t}\frac{(t-s)^{\omega -1}}{\varGamma (\omega )}Du(s)Cu(s)\,ds + \frac{t}{\delta \eta -1} \int _{0}^{1}\frac{(1-s)^{\omega -1}}{\varGamma (\omega )}Du(s)Cu(s)\,ds \\ & {} - \frac{\delta t}{\delta \eta -1} \int _{0}^{\eta }\frac{(\eta -s)^{ \omega -1}}{\varGamma (\omega )}Du(s)Cu(s)\,ds \biggr\vert + \Biggl\vert \sum_{i=1} ^{m} \int _{0}^{t}\frac{(t-s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+ \omega )}f_{i} \bigl(s,v(s)\bigr)\,ds \\ & {} + \frac{t}{\delta \eta -1} \sum_{i=1}^{m} \int _{0}^{1}\frac{(1-s)^{ \beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,v(s)\bigr)\,ds \\ & {}- \frac{ \delta t}{\delta \eta -1} \sum_{i=1}^{m} \int _{0}^{\eta }\frac{( \eta -s)^{\beta _{i}+\omega -1}}{\varGamma (\beta _{i}+\omega )}f_{i} \bigl(s,v(s)\bigr)\,ds \Biggr\vert \\ \leq & \biggl(1+\frac{1+\delta }{ \vert \delta \eta -1 \vert } \biggr) \Biggl[\frac{ \Vert \chi \Vert \Vert \varOmega \Vert }{\varGamma (\alpha +1)\varGamma (\omega +1)} + \sum _{i=1}^{m}\frac{ \Vert \phi _{i} \Vert }{\varGamma (\beta _{i}+\omega +1)} \Biggr] \leq r, \end{aligned}$$

which implies \(\Vert u \Vert \leq r\), and so \(u\in S\). Hence all the conditions of Lemma 2 are satisfied. Therefore, the operator equation \(u(t)=Au(t)+ Bu(t)\) has at least one solution in S. Consequently, there exists a solution of BVP (2) in \(\mathbb{J}=[0,1]\). Thus the proof is completed. □

4 Example

We present an example of the BVP of hybrid fractional sequential integro-differential equations to test our main result.

Example 1

$$ \textstyle\begin{cases} {}^{c}D^{\frac{3}{5}} [\frac{^{c}D^{\frac{3}{2}}u(t)-\sum_{i=1} ^{3} I^{\beta _{i}}f_{i}(t,u(t))}{\frac{1}{4} t^{2}\sec ( \frac{\pi t}{3}) (\frac{ \vert u(t) \vert +1}{ \vert u(t) \vert +2} )} ]= \frac{2}{5}\cos (\frac{t}{6}) (\frac{ \vert u(t) \vert }{ \vert u(t) \vert +1}+I^{ \frac{5}{2}}u(t) ), \quad t\in J,\\ u(0)=0, \quad\quad D^{\omega }u(0)=0, \quad\quad u(1)= \delta u(\eta ), \quad 0< \delta < 1, 0< \eta < 1, \end{cases} $$
(16)

where

$$\begin{aligned} \begin{aligned}[b] \sum_{i=1}^{3}I^{\beta _{i}}f_{i} \bigl(t,u(t)\bigr) ={} & I^{\frac{1}{3}} \biggl( \cos \biggl(\frac{t}{3} \biggr) \biggl(\frac{ \vert u(t) \vert }{1+ \vert u(t) \vert } \biggr) + e^{t}\sin t \biggr) + I^{\frac{4}{3}} \biggl( \frac{\sqrt{t}\sin t \vert u(t) \vert }{ \vert u(t) \vert +1}+\frac{2}{3-t^{2}} \biggr) \\ & {}+ I^{\frac{3}{5}} \biggl( \frac{ \vert u(t) \vert \tan (\frac{\sqrt{t}}{2})}{ \vert u(t)+2 \vert } +\frac{t}{1+e^{t}} \biggr). \end{aligned} \end{aligned}$$
(17)

From equations (16) and (17), we have \(\alpha = \frac{3}{5}\), \(\omega =\frac{3}{2}\), \(m=3\), \(\beta _{1} = \frac{1}{3}\), \(\beta _{2}=\frac{4}{3}\), \(\beta _{3}=\frac{3}{5}\), \(\gamma = \frac{5}{2}\), \(f_{1}(t,u(t))= \cos (\frac{t}{3}) (\frac{ \vert u(t) \vert }{1+ \vert u(t) \vert } ) + e^{t}\sin t\), \(f_{2}(t,u(t))= \frac{\sqrt{t}\sin t \vert u(t) \vert }{ \vert u(t) \vert +1}+\frac{2}{3-t ^{2}}\), \(f_{3}(t,u(t))= \frac{ \vert u(t) \vert \tan (\frac{\sqrt{t}}{2})}{ \vert u(t)+2 \vert } +\frac{t}{1+e^{t}}\), \(g(t, u(t)) =\frac{1}{4} t^{2}\sec (\frac{\pi t}{3}) ( \frac{ \vert u(t) \vert +1}{ \vert u(t) \vert +2} )\), and \(h(t,u(t),I^{\gamma }u(t)) = \frac{2}{5} \cos (\frac{t}{6})(\frac{ \vert u(t) \vert }{ \vert u(t) \vert +1}+I^{\frac{5}{2}}u(t))\). It is easy to show that

$$\begin{aligned}& \bigl\vert f_{1}\bigl(t, u(t)\bigr)-f_{1}(t, v(t) \bigr\vert \leq \cos \biggl(\frac{t}{3}\biggr) \bigl\vert u(t)-v(t) \bigr\vert , \\& \bigl\vert f_{2}\bigl(t, u(t)\bigr)-f_{2}(t, v(t) \bigr\vert \leq \sqrt{t}\sin t \bigl\vert u(t)-v(t) \bigr\vert , \\& \bigl\vert f_{3}\bigl(t, u(t)\bigr)-f_{3}(t, v(t) \bigr\vert \leq \tan \biggl(\frac{\sqrt{t}}{2}\biggr) \bigl\vert u(t)-v(t) \bigr\vert , \\& \bigl\vert g\bigl(t, u(t)\bigr)-g(t, v(t) \bigr\vert \leq \frac{1}{4} t^{2}\sec \biggl(\frac{\pi t}{3}\biggr) \bigl\vert u(t)-v(t) \bigr\vert , \\& \text{and} \quad \bigl\vert h\bigl(t, u(t),\bar{u}(t)\bigr)-h(t, v(t), \bar{v}(t) \bigr\vert \leq \frac{2}{5} \cos \biggl(\frac{t}{6} \biggr) \bigl( \bigl\vert u(t)-v(t) \bigr\vert + \bigl\vert \bar{u}(t)- \bar{v}(t) \bigr\vert \bigr). \end{aligned}$$

Therefore, we can choose

$$\begin{aligned}& \lambda _{1}(t) = \cos \biggl(\frac{t}{3}\biggr), \quad\quad \lambda _{2}(t) = \sqrt{t} \sin t, \quad\quad \lambda _{3}(t) = \tan \biggl(\frac{\sqrt{t}}{2}\biggr), \\& \varTheta (t) = \frac{1}{4} t^{2}\sec \biggl(\frac{\pi t}{3}\biggr), \quad \quad \psi (t)=\frac{2}{5}\cos \biggl( \frac{t}{6}\biggr). \end{aligned}$$

Also the functions \(g(t,u(t))\), \(h(t,u(t),I^{\gamma }u(t))\), and \(f _{i}(t,u(t))\), \(i=1,2,3\), are bounded by the positive functions as follows:

$$\begin{aligned}& \bigl\vert f_{1}\bigl(t, u(t)\bigr) \bigr\vert \leq \cos \biggl( \frac{t}{3}\biggr) + e^{t}\sin t = \phi _{1}(t), \\& \bigl\vert f_{2}\bigl(t, u(t)\bigr) \bigr\vert \leq \sqrt{t}\sin t+\frac{2}{3-t^{2}} = \phi _{2}(t), \\& \bigl\vert f_{3}\bigl(t, u(t)\bigr) \bigr\vert \leq \tan \biggl( \frac{\sqrt{t}}{2}\biggr) +\frac{t}{1+e^{t}} = \phi _{3}(t), \\& \bigl\vert g\bigl(t, u(t)\bigr) \bigr\vert \leq \frac{1}{4} t^{2}\sec \biggl(\frac{\pi t}{3}\biggr) = \chi (t), \\& \text{and} \quad \bigl\vert h\bigl(t,u(t),v(t)\bigr) \bigr\vert \leq \frac{2}{5}\cos \biggl(\frac{t}{6}\biggr) = \varOmega (t). \end{aligned}$$

Choosing \(\delta =0.1\), \(\eta =0.9\) and putting \(\Vert \varOmega \Vert = \Vert \psi \Vert =0.4\), \(\Vert \chi \Vert = \Vert \varTheta \Vert =0.5\) in (8), we have

$$ \biggl(1+\frac{1+\delta }{ \vert \delta \eta -1 \vert } \biggr) \biggl[\frac{ \Vert \varOmega \Vert \Vert \varTheta \Vert + \Vert \chi \Vert \Vert \psi \Vert }{\varGamma (\alpha +1) \varGamma (\omega +1)} + \frac{ \Vert \chi \Vert \Vert \psi \Vert }{\varGamma (\alpha +1) \varGamma (\omega +1)\varGamma (\gamma +1)} \biggr] \approx 0.8594 < 1. $$

Hence all the conditions of Theorem 2 hold. Thus the boundary value problem (16) has at least one solution in \(\mathbb{J}=[0,1]\).

5 Conclusion

In consequence to generalized Krasnoselskii’s fixed point theorem provided by Dhage [1], we developed an existence result for the aforementioned boundary value problem (2) of hybrid fractional sequential integro-differential equations. The respective result has been tested by providing an illustrative example.

References

  1. Dhage, B.C., Lakshmikantham, V.: Basic results on hybrid differential equations. Nonlinear Anal. 4, 414–424 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, London (1974)

    MATH  Google Scholar 

  3. Benchohra, B., Graef, J.R., Hamani, S.: Existence results for boundary value problem with nonlinear fractional differential equation. Appl. Anal. 87, 851–863 (2008)

    Article  MathSciNet  Google Scholar 

  4. Zhang, S.Q.: The existence of a positive solution for a nonlinear fractional differential equation. J. Math. Anal. Appl. 252, 804–812 (2000)

    Article  MathSciNet  Google Scholar 

  5. Belarbi, A., Benchohra, M., Ouahab, A.: Existence result for fractional differential equation of fractional order. Appl. Anal. 85, 1459–1470 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bai, Z., Lu, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

    Article  MathSciNet  Google Scholar 

  7. Li, C.F., Luo, X.N., Zhou, Y.: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 59, 1363–1375 (2010)

    Article  MathSciNet  Google Scholar 

  8. Babakhani, A., Gejji, V.D.: Existence of positive solutions of nonlinear fractional differential equations. J. Math. Anal. Appl. 278, 434–442 (2003)

    Article  MathSciNet  Google Scholar 

  9. Zhang, S.Q.: Existence of positive solution for some class of a nonlinear fractional differential equations. J. Math. Anal. Appl. 278, 136–148 (2003)

    Article  MathSciNet  Google Scholar 

  10. Ahmad, B., Nieto, J.J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray–Schauder degree theory. Topol. Methods Nonlinear Anal. 35, 295–304 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Rehman, M., Khan, R.A.: Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations. Appl. Math. Lett. 23, 1038–1044 (2010)

    Article  MathSciNet  Google Scholar 

  12. Khan, R.A., Rehman, M.: Existence of multiple positive solutions for a general system of fractional differential equations. Commun. Appl. Nonlinear Anal. 18, 25–35 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Khan, R.A., Rehman, M., Asif, N.: Three point boundary value problems for nonlinear fractional differential equations. Acta Math. Sci. 31(B4), 1–10 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Rehman, M., Khan, R.A.: A note on boundary value problems for a coupled system of fractional differential equations. Comput. Math. Appl. 61, 2630–2637 (2011)

    Article  MathSciNet  Google Scholar 

  15. Benchohra, M., Hamidi, N., Henderson, J.: Fractional differential equations with anti-periodic boundary conditions. Numer. Funct. Anal. Optim. 34(4), 404–414 (2013)

    Article  MathSciNet  Google Scholar 

  16. Wang, J., Li, X.: Ulam–Hyers stability of fractional Langevin equations. Appl. Math. Comput. 258, 72–83 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Kumama, P., Ali, A., Shah, K., Khan, R.A.: Existence results and Hyers–Ulam stability to a class of nonlinear arbitrary order differential equations. J. Nonlinear Sci. Appl. 10, 2986–2997 (2017)

    Article  MathSciNet  Google Scholar 

  18. Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 63 (2011)

    Article  MathSciNet  Google Scholar 

  19. Haq, F., Shah, K., Rahman, G., Shahzad, M.: Hyers–Ulam stability to a class of fractional differential equations with boundary conditions. Int. J. Appl. Comput. Math. 3, 1135–1147 (2017)

    Article  MathSciNet  Google Scholar 

  20. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  21. Yang, Y., Ma, Y., Wang, L.: Legendre polynomials operational matrix method for solving fractional partial differential equations with variable coefficients. Math. Probl. Eng. (2015). https://doi.org/10.1155/2015/915195

    Article  MathSciNet  MATH  Google Scholar 

  22. Mainardi, F.: Fractals and Fractional Calculus Continuum Mechanics. Springer, Vienna (1997)

    MATH  Google Scholar 

  23. Rostamy, D., Karimi, K., Mohamadi, E.: Solving fractional partial differential equations by an efficient new basis. Int. J. Appl. Math. Comput. 5(1), 6–12 (2013)

    MathSciNet  Google Scholar 

  24. Tarasov, V.E.: Fractional integro differential equations for electromagnetic waves in dielectric media. Theor. Math. Phys. 158(3), 355–359 (2009)

    Article  Google Scholar 

  25. Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econ. 73, 5–59 (1996)

    Article  MathSciNet  Google Scholar 

  26. Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32(2), 1–104 (2004)

    Article  Google Scholar 

  27. Magin, R.L.: Fractional calculus in bioengineering—part 2. Crit. Rev. Biomed. Eng. 32(2), 105–193 (2004)

    Article  Google Scholar 

  28. Magin, R.L.: Fractional calculus in bioengineering—part 3. Crit. Rev. Biomed. Eng. 32(3–4), 194–377 (2004)

    Google Scholar 

  29. Hilal, K., Kajouni, A.: Boundary value problem for hybrid differential equations with fractional order. Adv. Differ. Equ. 2015, 183 (2015)

    Article  MathSciNet  Google Scholar 

  30. Herzallah, M.A.E., Baleanu, D.: On fractional order hybrid differential equations. Abstr. Appl. Anal. 2014, Article ID 389386 (2014). https://doi.org/10.1155/2014/389386

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu, H., Sun, S., Yang, D., Teng, H.: Theory of fractional hybrid differential equations with linear perturbations of second type. Bound. Value Probl. 2013, 23 (2013)

    Article  MathSciNet  Google Scholar 

  32. Zhao, Y., Sun, S., Han, Z., Li, Q.: Theory of fractional hybrid differential equations. Comput. Math. Appl. 62, 1312–1324 (2011)

    Article  MathSciNet  Google Scholar 

  33. Ullah, Z., Ali, A., Khan, R.A., Iqbal, M.: Existence results to a class of hybrid fractional differential equations. Matriks Sains Mat. (MSMK) 1, 13–17 (2018)

    Google Scholar 

  34. Sitho, S., Ntouyas, S.K., Tariboon, J.: Existence results for hybrid fractional integro-differential equations. Bound. Value Probl. 2015, 113 (2015)

    Article  MathSciNet  Google Scholar 

  35. Podlubny, I.: Fractional Differential Equation. Academic Press, New York (1999)

    MATH  Google Scholar 

  36. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  37. Khan, R.A., Shah, K.: Existence and uniqueness of solutions to fractional order multi-point boundary value problems. Commun. Appl. Anal. 19, 515–526 (2015)

    Google Scholar 

Download references

Acknowledgements

We thank the referees for their useful suggestions which improved the final version of the manuscript.

Availability of data and materials

Not applicable.

Funding

There is no funding source to support this manuscript financially.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution in this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Jamil.

Ethics declarations

Competing interests

It is declared that no competing interests exist regarding this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamil, M., Khan, R.A. & Shah, K. Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations. Bound Value Probl 2019, 77 (2019). https://doi.org/10.1186/s13661-019-1190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-019-1190-4

MSC

Keywords