Skip to main content

On the convergence of Lupaş \((p,q)\)-Bernstein operators via contraction principle

Abstract

The present paper deals with the limit behavior of iterates of Lupaş q- and \((p,q)\)-Bernstein operators. We obtain the convergence for Lupaş q- and \((p,q)\)-Bernstein operators by using the contraction principle.

1 Introduction and preliminaries

For any \(f\in \mathcal{C}[0,1]\), the sequence of operators \(B_{n}:C[0,1] \rightarrow \mathcal{C}[0,1]\) defined by

$$ B_{n}(f,x)=\sum_{k=0}^{n} \binom{n}{k}x^{k}(1-x)^{n-k}f \biggl( \frac{k}{n} \biggr), \quad x\in [ 0,1], n\in \mathbb{N}, $$
(1.1)

is known as Bernstein polynomials [6].

Lupaş [18] defined the first q-analogue of Bernstein operators (rational) for \(q>0\) as follows:

$$ L_{n}(f,q;x)=\sum_{k=0}^{n}f \biggl( \frac{[k]_{q}}{[n]_{q}} \biggr) b _{n,k}(x;q), $$
(1.2)

where

b n , k (x;q)= [ n k ] q q n ( n 1 ) 2 x k ( 1 x ) n k j = 0 n 1 { ( 1 x ) + q j x } .

Later Phillips [32] proposed another q-analog of Bernstein operators.

For \(q={1}\), both are reduced to the original ones. However, for \(q\neq {1}\), there are considerable differences between them. The convergence properties for iterates of q-Bernstein polynomials have been investigated in [5, 29, 30, 33, 37], and [38].

For elementary properties of q-analogs of Bernstein polynomials, we refer to [12, 18, 19, 31].

The q-integer \([k]_{q}\) for \(k\in \mathbb{N}\) and a fixed real number \(q>{0}\) is defined by

$$ [ k]_{q}= \textstyle\begin{cases} \frac{1-q^{k}}{1-q} & \text{if }q\neq 1, \\ k & \text{if }q=1. \end{cases} $$

Set \([0]_{q}={0}\). The q-factorial coefficients are defined by

$$ [ k]_{q}!= \textstyle\begin{cases} [ k]_{q}[k-1]_{q}\cdots [ 1]_{q} & \text{if }k\in \mathbb{N}, \\ 1 & \text{if }k=0, \end{cases} $$

and the q-binomial coefficients by

[ n k ] q = [ n ] q ! [ k ] q ! [ n k ] q ! ,0kn,

with [ n 0 ] q =1 and [ n k ] q =0 for \(k>n\).

Also,

$$ (x-a)_{q}^{n}= \textstyle\begin{cases} 1 & \text{if }n=0, \\ (x-a)(x-qa)\cdots (x-q^{n-1}a) & \text{if }n\geq {1}. \end{cases} $$

For any function f, the divided differences are denoted by \(\Delta _{q}^{0}f_{i}=f_{i}\) for \(i=0,1,2,\ldots,{n-1}\) and, recursively, by \(\Delta _{q}^{k+1}f_{i} = \Delta _{q}^{k}f_{i+1}- {q^{k}}\Delta _{q}^{k}f_{i}\) for \(k\geqq {0}\), where \(f_{i}\) denotes \(f(\frac{[i]}{[m]})\). It is established by induction that

Δ q k f i = r = 0 k ( 1 ) r q r ( r 1 ) 2 [ k r ] f i + k r

(see [36] and [17]).

Note that (1.2) may be written in the q-difference form

L n (f,q;x)= k = 0 n [ n k ] q Δ q k f 0 x k .
(1.3)

We may deduce that

$$ L_{n}(ax+b,q;x)=ax+b, \quad a,b\in \mathbb{R}. $$

Also, we can see that these operators verify for the test functions \(e_{j}(x)=x^{j}\), \(j=0,1,2\).

In 1993, Rus [34] introduced and developed the theory of (weakly) Picard operators, which is one of the most strong tools of fixed point theory with several applications to operator equations and inclusions. Berinde [8] showed that an almost contraction is more general than most of the contractions in the literature.

We now recall some basic features from fixed point theory (see [34]).

Definition 1.1

The operator S on a metric space \((X,d)\) is called a weakly Picard operator (WPO) if the sequence of iterates \((S^{m}(x))_{m}\geqq 1\) converges to a fixed point of S for all \(x\in X\).

We denote, as usual, \(S^{0}=I_{X}\), \(S^{m+1}=S\circ S^{m}\), \(m\in \mathbb{N}\).

Let \(F_{S} = \{\xi \in X:S(\xi )=\xi \}\). If an operator B is a WPO and \(F_{S}\) has exactly one element, then S is called a Picard operator (PO).

First, we give a characterization for WPOs.

Theorem 1.2

([33])

The operator S on a metric space \((X,d)\) is a weakly Picard operator  there exists a partition \(\{X_{\lambda }:\lambda \in \Lambda \}\) such that for every \(\lambda \in \Lambda \) one has \(X_{\lambda }\in I(S)\) and \(S|_{X_{\lambda }}: X_{\lambda }\rightarrow X_{\lambda }\) is a PO, where \(I(S):= \{\emptyset \neq Y\subset X:S(Y)\subset Y\}\) denotes the collection of all non-empty subsets invariant under S.

Moreover, for a WPO S, we take \(S^{\infty }\in X\) defined as

$$ S^{\infty }(x)=\lim_{m\rightarrow \infty }S^{m}(x),\quad x\in X. $$

Clearly, \(S^{\infty }(x) = F_{S}\). Also, if S is WPO, then we have \(F_{S}^{m}=F_{S}\neq \emptyset \), \(m\in \mathbb{N}\).

2 Iterates of Lupaş q-Bernstein operators

In the last decades the iterates of positive linear operators in various classes were intensively investigated. The study of convergence of iterates of Bernstein operators has connections to probability theory, matrix theory, spectral theory, and so on. We emphasize here the importance of the works of some mathematicians such as [1, 7, 9,10,11, 13, 14, 16, 20, 25], and [35].

We want to extend the study of the iterates of Bernstein operators using \((p,q)\)-calculus. Our aim is to study the convergence for iterates of Lupaşş \((p,q)\)-Bernstein operators using the contraction principle (theory of weakly Picard operators).

Theorem 2.1

([15])

For \(f\in C[0,1]\) and fixed \(n\in \mathbb{N}^{\ast }\), we have

$$ \lim_{M\rightarrow \infty }L_{n}^{M}(f;x)=f(0)+ \bigl(f(1)-f(0)\bigr)x,\quad x \in C[0,1]. $$

Rus [35] proved this result by using the contraction principle.

In [29] the authors defined

$$ L_{n}^{M+1}(f,q;x)=L_{n}\bigl(L_{n}^{M}(f,q;x) \bigr),\quad M=1,2,\ldots, $$

and

$$ L_{n}^{1}(f,q;x)=L_{n}(f,q;x). $$

In the same paper, the authors proved the convergence of iterates of q-Bernstein operators for \(q>0\) using q-differences, Stirling polynomials, and matrix techniques. Ostrovska [30] used eigenvalues and Radu [33] used the contraction principle to prove the convergence of these iterates. The following result gives the convergence of Lupaş q-Bernstein operators by using also the contraction principle. The following result gives the convergence of Lupaş q-Bernstein operators by using the contraction principle.

Theorem 2.2

Let \(L_{n}(f,q;x)\) be the Lupaş q-Bernstein operators defined in (1.2). Then for all \(q>0\),

$$ \lim_{M\rightarrow \infty }L_{n}^{M}(f,q;x)=f(0)+ \bigl(f(1)-f(0)\bigr)x $$
(2.1)

for all \(f\in C[0,1]\) and \(x\in [ 0,1]\).

Proof

First, we define \(X_{\alpha ,\beta }= \{f\in C[0,1]:f(0)=\alpha ,f(1)= \beta \}\), \(\alpha ,\beta \in {\mathbb{R}}\). Clearly, every \(X_{\alpha ,\beta } \) is a closed subset of \(C[0,1]\), and \(\{X_{ \alpha ,\beta },(\alpha ,\beta )\in {\mathbb{R}\times \mathbb{R}}\}\) is a partition of the space \(C[0,1]\).

It follows directly from the definition that Lupaş q-Bernstein polynomials possess the end-point interpolation property.

So we have that \(X_{\alpha ,\beta }\) is an invariant subset of \(f\mapsto L_{n}(f,q;\cdot )\) for all \((\alpha ,\beta )\in {\mathbb{R} \times \mathbb{R}}\) and \(n\in \mathbb{N}\).

We show that the restriction of \(f\mapsto L_{n}(f,q;\cdot )\) to \(X_{\alpha ,\beta }\) is a contraction for any \(\alpha ,\beta \in \mathbb{R}\). Put \(t_{n}=\min_{x\in [ 0,1]} ( b_{n,0}(x;q)+b_{n,n}(x;q) ) \), that is,

$$\begin{aligned} t_{n} =&\min_{x\in [ 0,1]} \biggl( \frac{(1-x)^{n}}{\prod_{j=0}^{n-1}\{(1-x)+q^{j}x\}}+ \frac{q^{\frac{n(n-1)}{2}}x^{n}}{ \prod_{j=0}^{n-1}\{(1-x)+q^{j}x\}} \biggr) \\ =&\min_{x\in [ 0,1]} \biggl( \frac{(1-x)^{n}+q^{ \frac{n(n-1)}{2}}x^{n}}{\prod_{j=0}^{n-1}\{(1-x)+q^{j}x\}} \biggr) . \end{aligned}$$

Then \(0< t_{n}\leq 1\).

Let \(f,g\in X_{\alpha ,\beta }\). Then

$$\begin{aligned}& \bigl\vert L_{n}(f,q;x)-L_{n}(g,q;x) \bigr\vert \\& \quad = \Biggl\vert \sum_{k=1}^{n-1}b_{n,k}(x;q) (f-g) \biggl( \frac{[k]_{q}}{[n]_{q}} \biggr) \Biggr\vert \\& \quad \leq \sum_{k=1}^{n-1}b_{n,k}(x;q) \Vert f-g \Vert _{[0,1]}= \bigl( 1-b_{n,0}(x;q)-b_{n,n}(x;q) \bigr) \Vert f-g \Vert _{[0,1]} \\& \quad = \biggl( 1-\frac{(1-x)^{n}}{\prod_{j=0}^{n-1}\{(1-x)+q^{j}x \}}-\frac{q^{\frac{n(n-1)}{2}}x^{n}}{\prod_{j=0}^{n-1}\{(1-x)+q ^{j}x\}} \biggr) \Vert f-g \Vert _{[0,1]} \\& \quad = \biggl( 1-\frac{((1-x)^{n}+q^{\frac{n(n-1)}{2}}x^{n})}{\prod_{j=0}^{n-1}\{(1-x)+q^{j}x\}} \biggr) \Vert f-g \Vert _{[0,1]} \\& \quad \leq ( 1-t_{n} ) \Vert f-g \Vert _{[0,1]}, \end{aligned}$$

and, finally,

$$ \bigl\Vert L_{n}(f,q;x)-L_{n}(g,q;x) \bigr\Vert _{[0,1]}\leq ( 1-t_{n} ) \Vert f-g \Vert _{[0,1]}. $$

The restriction of \(f\mapsto L_{n}(f,q;x)\) to \(X_{\alpha ,\beta }\) is a contraction.

On the other hand, \(K_{\alpha ,\beta }^{\ast }=\alpha e_{0}+(\beta - \alpha )e_{1}\in X_{\alpha ,\beta }\). Since \(L_{n}(e_{0},q;x)=e_{0}\) and \(L_{n}(e_{1},q;x)=e_{1}\), it follows that \(K_{\alpha ,\beta }^{\ast }\) is a fixed point of \(L_{n}(f,q;\cdot )\). For any \(f\in C[0,1]\), we have \(f\in X_{f(0),f(1)}\), and by using the contraction principle we obtain the desired result (2.1). □

In terms of WPOs, using (1.3), we can formulate the above theorem as follows.

Theorem 2.3

The Lupaş q-Bernstein operator \(f \mapsto L_{n}(f,q;\cdot )\) is WPO, and

$$ L^{\infty }_{n}(f,q;x) = f(0) + \bigl(f(1) - f(0) \bigr)x. $$
(2.2)

Proof

The operator \(S:X\rightarrow X\) is WPO if the sequence \((S^{M}(x))_{M \geq 1}\) converges to a fixed point of S for all \(x\in X\).

For a WPO, we consider the operator \(S^{\infty }:X\rightarrow X\) defined as

$$ S^{\infty }(x)=\lim_{M\rightarrow \infty }S^{M}(x). $$
(2.3)

Now, using Theorem 2.2 and (2.3), we get the result (2.2). □

3 Lupaş \((p,q)\)-Bernstein operator

Mursaleen et al. [23] defined the \((p,q)\)-analogs of Bernstein operators and studied their approximation properties (see [2, 3, 21, 22, 24,25,26,27,28]). For further reading, we refer to [4, 21, 22, 26, 27].

For any \(p>0\) and \(q>0\), we have

$$ [ n]_{p,q}=p^{n-1}+p^{n-2}q+p^{n-3}q^{2}+ \cdots+pq^{n-2}+q^{n-1}= \textstyle\begin{cases} \frac{p^{n}-q^{n}}{p-q} & \text{when }p\neq q\neq 1, \\ {n}p^{n-1} & \text{when }p=q\neq 1, \\ [ n ] _{q} & \text{when }p=1, \\ {n} & \text{when }p=q=1, \end{cases} $$

\(n=0,1,2,3,4,\ldots \) . Also,

[ k ] p , q ! = [ k ] p , q [ k 1 ] p , q [ 1 ] p , q , k = 1 , 2 , 3 , , [ n k ] p , q = [ n ] p , q ! [ k ] p , q ! [ n k ] p , q ! , k = 1 , 2 , 3 , ,

and

( a x + b y ) p , q n = k = 0 n p ( n k ) ( n k 1 ) 2 q k ( k 1 ) 2 [ n k ] p , q a n k b k x n k y k , ( x + y ) p , q n = ( x + y ) ( p x + q y ) ( p 2 x + q 2 y ) ( p n 1 x + q n 1 ) , ( 1 x ) p , q n = ( 1 x ) ( p q x ) ( p 2 q 2 x ) ( p n 1 q n 1 x ) .

Khan et al. [16] introduced the following Lupaş-type \((p,q)\)-analog of Bernstein operators (rational):

For any \(p>0\) and \(q>0\), we get

$$ L_{n}(f,p,q;x)=\sum_{k=0}^{n}f \biggl( \frac{p^{n-k}[k]_{p,q}}{[n]_{p,q}} \biggr) b_{n,k}(x;p,q),\quad x \in [ 0,1], $$
(3.1)

where

b n , k (x;p,q)= [ n k ] p , q p ( n k ) ( n k 1 ) 2 q k ( k 1 ) 2 x k ( 1 x ) n k j = 0 n 1 { p j ( 1 x ) + q j x } ,

and \(b_{n,0}(x;p,q),b_{n,1}(x;p,q),\ldots,b_{n,n}(x;p,q)\) are the Lupaş \((p,q)\)-Bernstein basis functions [12]. We recall the following auxiliary results:

$$\begin{aligned}& L_{n}(e_{0},p,q;x) = 1 , \\& L_{n}(e_{1},p,q;x) = x , \\& L_{n}(e_{2},p,q;x) = \frac{p^{n-1}x}{[n]_{p,q}} + \frac{q^{2}x^{2}}{p(1-x) + qx}\frac{[n-1]_{p,q}}{[n]_{p,q}}. \end{aligned}$$

4 Iterates of Lupaş \((p,q)\)-Bernstein operator

Now we extend the study of the iterates of Bernstein operators in the framework of \((p,q)\)-calculus. The iterates of the Lupaş \((p,q)\)-Bernstein polynomial are defined as

$$ L_{n}^{M+1}(f,p,q;x)=L_{n} \bigl( L_{n}^{M}(f,p,q;x) \bigr), \quad M=1,2,\ldots, $$

and

$$ L_{n}^{1}(f,p,q;x)=L_{n}(f,p,q;x). $$

We study the convergence of the iterates of Lupaş \((p,q)\)-Bernstein operators.

Theorem 4.1

Let \(L_{n}(f,p,q;x)\) be the Lupaş \((p,q)\)-Bernstein operators defined in (3.1), where \(p>0\), \(q>0\).

Then the Lupaş \((p,q)\)-Bernstein operator is a weakly Picard operator, and its sequence \(( L_{n}^{M} ) _{M\geq 1}\) of iterates satisfies

$$ \lim_{M\rightarrow \infty }L_{n}^{M}(f,p,q;x)=f(0)+ \bigl(f(1)-f(0)\bigr)x. $$
(4.1)

Proof

The proof follows the same steps as in Theorem 2.2. Let

$$ X_{\alpha ,\beta } = \bigl\{ f\in C[0,1]\mid f(0)=\alpha ,f(1)=\beta \bigr\} , \quad \alpha ,\beta \in {\mathbb{R}}. $$

The Lupaş \((p,q)\)-Bernstein polynomial possess the end-point interpolation property

$$ L_{n}(f,p,q;0)=f(0),\quad\quad L_{n}(f,p,q;1)=f(1). $$

Then \(X_{\alpha ,\beta }\) is an invariant subset of \(f\mapsto L_{n}(f,p,q; \cdot )\) for all \((\alpha ,\beta )\in \mathbb{R}\times \mathbb{R}\) and \(n\in \mathbb{N}\).

We prove that the restriction of \(f\mapsto L_{n}(f,p,q;\cdot )\) to \(X_{\alpha ,\beta }\) is a contraction for any \(\alpha \in \mathbb{R}\) and \(\beta \in \mathbb{R}\). Let \((\alpha ,\beta )\in \mathbb{R}\) and \(f,g\in X_{\alpha ,\beta }\). From the definition of the \((p,q)\)-Bernstein operator,

$$\begin{aligned} \bigl\vert L_{n}(f,p,q;x)-L_{n}(g,p,q;x) \bigr\vert &= \Biggl\vert \sum_{k=1}^{n-1}b_{n,k}(x;p,q) (f-g) \biggl( \frac{p^{n-k}[k]_{p,q}}{[n]_{p,q}} \biggr) \Biggr\vert \\ &\leq \sum_{k=1}^{n-1}b_{n,k}(x;p,q) \Vert f-g \Vert _{[0,1]} \\ &= \bigl( 1-b_{n,0}(x;p,q)-b_{n,n}(x;p,q) \bigr) \Vert f-g \Vert _{[0,1]}. \end{aligned}$$

Let \(w_{n}=\min_{x\in [ 0,1]} ( b_{n,0}(x;p,q)+b_{n,n}(x;p,q) ) \), that is,

$$ w_{n}=\min_{x\in [ 0,1]} \biggl( \frac{p^{\frac{n(n-1)}{2}}(1-x)^{n}}{ \prod_{j=0}^{n-1}\{p^{j}(1-x)+q^{j}x\}}+ \frac{q^{ \frac{n(n-1)}{2}}x^{n}}{\prod_{j=0}^{n-1}\{p^{j}(1-x)+q^{j}x\}} \biggr). $$

Then \(0< w_{n}\leq 1\). Therefore

$$\begin{aligned} \bigl\vert L_{n}(f,p,q;x)-L_{n}(g,p,q;x) \bigr\vert &= \biggl( 1-\frac{(p^{\frac{n(n-1)}{2}}(1-x)^{n}+q ^{\frac{n(n-1)}{2}}x^{n})}{\prod_{j=0}^{n-1}\{p^{j}(1-x)+q^{j}x \}} \biggr) \Vert f-g \Vert _{[0,1]} \\ &\leq ( 1-w_{n} ) \Vert f-g \Vert _{[0,1]} \end{aligned}$$

for any \(f,g\in X_{\alpha ,\beta }\), that is, the restriction of \(f\mapsto L_{n}(f,p,q;\cdot )\) to \(X_{\alpha ,\beta }\) is a contraction.

On the other hand, \(K_{\alpha ,\beta }^{\ast }=\alpha e_{0}+(\beta - \alpha )e_{1}\in X_{\alpha ,\beta }\), where \(e_{0}(x)=1\) and \(e_{1}(x)=x\) for all \(x\in [ 0,1]\). Since \(L_{n}(e_{0},p,q;x)=e _{0}\), and \(L_{n}(e_{1},p,q;x)=e_{1}\), it follows that \(K_{\alpha , \beta }^{\ast }\) is a fixed point of \(L_{n}(f,p,q;\cdot )\).

By Theorem 1.2 the Lupaş \((p,q)\)-Bernstein operator is a WPO, and using the contraction principle, we obtain the claim (4.1). □

5 Conclusion

In this paper, we have studied the convergence for Lupaş q-Bernstein operators by using the contraction principle. We further extended the study of the iterates of Bernstein operators using \((p,q)\)-calculus.

References

  1. Abel, U., Ivan, M.: Over-iterates of Bernstein operators: a short and elementary proof. Am. Math. Mon. 116, 535–538 (2009)

    Article  MathSciNet  Google Scholar 

  2. Acar, T.: \((p,q)\)-Generalization of Szász–Mirakyan operators. Math. Methods Appl. Sci. 39(10), 2685–2695 (2016)

    Article  MathSciNet  Google Scholar 

  3. Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p,q)\)-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory (2018). https://doi.org/10.1007/s11785-016-0633-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Acar, T., Mursaleen, M., Mohiuddine, S.A.: Stancu type \((p,q)\)-Szász–Mirakyan–Baskakov operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 67(1), 116–128 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Acu, A.M., Radu, V.A.: About the iterates of some operators depending on a parameter and preserving the affine functions. Iran. J. Sci. Technol., Trans. A, Sci. https://doi.org/10.1007/s40995-017-0461-0

  6. Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Commun. Soc. Math. Kharkow 2(13), 1–2 (1912)

    MATH  Google Scholar 

  7. Bica, A., Galea, L.F.: On Picard iterates properties of the Bernstein operators and an application to fuzzy numbers. Commun. Math. Anal. 5(1), 8–19 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Brinde, V.: Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 9(1), 43–53 (2004)

    MathSciNet  Google Scholar 

  9. Cătinaş, T., Otrocol, D.: Iterates of Bernstein type operators on a square with one curved side via contraction principle. Int. J. Fixed Point Theory Comput. Appl. 14(1), 97–106 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Devdhara, A.R., Mishra, V.N.: Stancu variant of \((p,q)\)-Szász–Mirakyan operators. J. Inequal. Spec. Funct. 8(5), 1–7 (2017)

    MathSciNet  Google Scholar 

  11. Gonska, H.H., Raşa, I.: The limiting semigroup of the Bernstein iterates: degree of convergence. Acta Math. Hung. 111, 119–130 (2006)

    Article  MathSciNet  Google Scholar 

  12. Han, L.-W., Chu, Y., Qiu, Z.-Y.: Generalized Bèzier curves and surfaces based on Lupaş q-analogue of Bernstein operator. J. Comput. Appl. Math. 261, 352–363 (2014)

    Article  MathSciNet  Google Scholar 

  13. Kadak, U.: On weighted statistical convergence based on \((p,q)\)-integers and related approximation theorems for functions of two variables. J. Math. Anal. Appl. 443, 752–764 (2016)

    Article  MathSciNet  Google Scholar 

  14. Kadak, U.: Weighted statistical convergence based on generalized difference operator involving \((p,q)\)-gamma function and its applications to approximation theorems. J. Math. Anal. Appl. 448, 1633–1650 (2017)

    Article  MathSciNet  Google Scholar 

  15. Kelisky, R.P., Rivlin, T.J.: Iterates of Bernstein polynomials. Pac. J. Math. 21, 511–520 (1967)

    Article  MathSciNet  Google Scholar 

  16. Khan, K., Lobiyal, D.K.: Bèzier curve based on Lupaş \((p,q)\)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 317, 458–477 (2017)

    Article  MathSciNet  Google Scholar 

  17. Lee, S.L., Phillips, G.M.: Polynomial interpolation at points of a geometric mesh on a triangle. Proc. R. Soc. Edinb. 108A, 75–87 (1988)

    Article  MathSciNet  Google Scholar 

  18. Lupaş, A.: A q-analogue of the Bernstein operator. Univ. Cluj-Napoca Semin. Numer. Stat. Calc. 9, 85–92 (1987)

    MathSciNet  MATH  Google Scholar 

  19. Mahmudov, N.I., Sabancgil, P.: Some approximation properties of Lupaş q-analogue of Bernstein operators. arXiv:1012.4245v1 [math.FA]. Accessed 20 Dec 2010

  20. Mishra, V.N., Khatri, K., Mishra Deepmala, L.N.: Inverse result in simultaneous approximation by Baskakov–Durrmeyer–Stancu operators. J. Inequal. Appl. 2013, 586 (2013)

    Article  MathSciNet  Google Scholar 

  21. Mishra, V.N., Mursaleen, M., Pandey, S., Alotaibi, A.: Approximation properties of Chlodowsky variant of \((p,q)\)-Bernstein–Stancu–Schurer operators. J. Inequal. Appl. 2017, 176 (2017)

    Article  MathSciNet  Google Scholar 

  22. Mishra, V.N., Pandey, S.: On \((p,q)\)-Baskakov–Durrmeyer–Stancu operators. Adv. Appl. Clifford Algebras 27(2), 1633–1646 (2017)

    Article  MathSciNet  Google Scholar 

  23. Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015). Erratum to “On \((p,q)\)-analogue of Bernstein operators”, Appl. Math. Comput. 278, 70–71 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Mursaleen, M., Ansari, K.J., Khan, A.: Some approximation results by \((p,q)\)-analogue of Bernstein–Stancu operators. Appl. Math. Comput. 264, 392–402 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Mursaleen, M., Khan, A.: Generalized q-Bernstein–Schurer operators and some approximation theorems. J. Funct. Spaces 2013, Article ID 719834 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Mursaleen, M., Khan, F., Khan, A.: Approximation by \((p,q)\)-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory 10(8), 1725–1740 (2016)

    Article  MathSciNet  Google Scholar 

  27. Mursaleen, M., Nasiruzzaman, Md., Khan, A., Ansari, K.J.: Some approximation results on Bleimann–Butzer–Hahn operators defined by \((p,q)\)-integers. Filomat 30(3), 639–648 (2016)

    Article  MathSciNet  Google Scholar 

  28. Mursaleen, M., Nasiruzzaman, Md., Nurgali, A.: Some approximation results on Bernstein–Schurer operators defined by \((p,q)\)-integers. J. Inequal. Appl. 2015, 249 (2015)

    Article  MathSciNet  Google Scholar 

  29. Oruç, H., Tuncer, N.: On the convergence and iterates of q-Bernstein polynomials. J. Approx. Theory 117, 301–313 (2002)

    Article  MathSciNet  Google Scholar 

  30. Ostrovska, S.: q-Bernstein polynomials and their iterates. J. Approx. Theory 123, 232–255 (2003)

    Article  MathSciNet  Google Scholar 

  31. Ostrovska, S.: On the Lupaş q-analogue of the Bernstein operator. Rocky Mt. J. Math. 36(5), 1615–1629 (2006)

    Article  MathSciNet  Google Scholar 

  32. Phillips, G.M.: Bernstein polynomials based on the q-integers. Ann. Numer. Math. 4, 511–518 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Radu, V.A.: Note on the iterates of q- and \((p,q)\)-Bernstein operators, Sci. Stud. Res. Ser. Math. Inform., 26(2), 83–94 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Rus, I.A.: Weakly Picard mappings. Comment. Math. Univ. Carol. 34(4), 769–773 (1993)

    MathSciNet  MATH  Google Scholar 

  35. Rus, I.A.: Iterates of Bernstein operators, via contraction principle. J. Math. Anal. Appl. 292, 259–261 (2004)

    Article  MathSciNet  Google Scholar 

  36. Schoenberg, I.J.: On polynomial interpolation at the points of a geometric progression. Proc. R. Soc. Edinb. 90A, 195–207 (1981)

    Article  MathSciNet  Google Scholar 

  37. Srivastava, H.M., Mursaleen, M., Alotaibi, A.M., Nasiruzzaman, Md., Al-Abied, A.A.H.: Some approximation results involving the q-Szász–Mirakjan–Kantorovich type operators via Dunkl’s generalization. Math. Methods Appl. Sci. 40(15), 5437–5452 (2017)

    Article  MathSciNet  Google Scholar 

  38. Xiang, X., He, Q., Yang, W.: Convergence rate for iterates of q-Bernstein polynomials. Anal. Theory Appl. 23(3), 243–254 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research project was supported by a grant from the “Research Center of the Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University.

Author information

Authors and Affiliations

Authors

Contributions

The first author has 50 percent contribution, the third author also has 50 percent contribution, whereas the second author checked and drafted the manuscript in its present form after making necessary corrections. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Mursaleen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin Jebreen, H., Mursaleen, M. & Ahasan, M. On the convergence of Lupaş \((p,q)\)-Bernstein operators via contraction principle. J Inequal Appl 2019, 34 (2019). https://doi.org/10.1186/s13660-019-1985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-019-1985-y

MSC

Keywords