Skip to main content

Best approximation of functions in generalized Hölder class

Abstract

Here, for the first time, error estimation of the functions \(g\in H_{z}^{(w)}\) and \(\tilde{g}\in H_{z}^{(w)}\) classes using \(TC^{1}\) method of F. S. (Fourier Series) and C. F. S. (Conjugate Fourier Series), respectively, are determined. The results of (Dhakal in Int. Math. Forum 5(35):1729–1735, 2010; Dhakal in Int. J. Eng. Technol. 2(3):1–15, 2013; Kushwaha and Dhakal in Nepal J. Sci. Technol. 14(2):117–122, 2013) become the particular cases of our Theorem 2.1. Some important corollaries are also deduced from our main theorems.

1 Introduction

Several results on the error estimation of a function g in Lipschitz and Hölder classes by a trigonometric polynomial using different single and product means have been obtained by the researchers like [111], and [12].

Our motivation for this work is to consider a more advanced class of functions that can provide best approximation by a trigonometric polynomial of degree not more than r. Therefore, in this work, we generalize the results of Kushwaha and Dhakal [3] and Dhakal [1, 2]. In fact, we obtain the results on the error estimation for the function \(f\in H_{z}^{(w)}\) (\(z\geq1\)) by \(T.C^{1}\) method by F. S. Thus, the results of Kushwaha and Dhakal [3] and Dhakal [1, 2] become the particulars cases of our Theorem 2.1.

We also obtain the results on the error estimation of the function \(\tilde{g} \in H_{z}^{(w)}\) (\(z\geq1\)) by \(T.C^{1}\) method of C. F. S.

Let “\(T=(a_{r,m})\) be an infinite triangular matrix satisfying the conditions of regularity [13], i.e.,

$$ \begin{aligned} &\sum_{m=0}^{r}a_{r,m} =1 \quad \mbox{as } r\to\infty, \\ &a_{r,m} =0 \quad \mbox{for } m>r, \\ &\sum_{m=0}^{r}|a_{r,m}| \leq M, \quad \mbox{a finite constant}. \end{aligned} $$
(1)

The sequence-to-sequence transformation

$$ t_{r}^{T}:=\sum_{m=0}^{r}a_{r,m}s_{m}= \sum_{m=0}^{r}a_{r,r-m}s_{r-m} $$
(2)

defines the sequence \(t_{r}^{T}\) of triangular matrix means of the sequence \(\{s_{r}\}\) generated by the sequence of coefficients \((a_{r,m})\).

If \(t_{r}^{T} \to s\) as \(r\to\infty\), then the infinite series \(\sum_{r=0}^{\infty}h_{r}\) or the sequence \(\{s_{r}\}\) is summable to s by a triangular matrix (T-method) [14].”

“Let

$$\begin{aligned} C_{r}^{1} & = \frac{s_{0}+s_{1}+\cdots+s_{r}}{r+1} \\ &=\frac{1}{r+1}\sum_{m=0}^{r}s_{m} \to s \quad \mbox{as }r\to\infty. \end{aligned}$$
(3)

If \(C_{r}^{1} \to s\) as \(r\to\infty\), then the infinite series \(\sum_{r=0}^{\infty}h_{r}\) is summable to s by \(C^{1}\) means [14].” The \(TC^{1}\) means (T-means of \(C^{1}\) means) is given by

$$\begin{aligned} t_{r}^{T.C^{1}}&:=\sum_{m=0}^{r} a_{r,m} C_{m}^{1} \\ & = \sum_{m=0}^{r}a_{r,m} \frac{1}{m+1} \sum_{v=0}^{m} s_{m}. \end{aligned}$$
(4)

If \(t_{r}^{T.C^{1}} \to s\) as \(r \to\infty\), then the series \(\sum_{r=0}^{\infty} h_{r}\) or the sequence \(\{s_{r}\}\) is summable to s by \(T.C^{1}\) means.

The regularity of T and \(C^{1}\) methods implies the regularity of \(T.C^{1}\) method.

Remark 1

(Example)

Consider an infinite series

$$ 1+\sum_{n=1}^{\infty}(-1)^{n}.2n. $$
(5)

The nth partial sum of (5) is given by

$$s_{n}= \textstyle\begin{cases} n+1,&n\text{ is even}, \\ 0,&n\text{ is odd} \end{cases} $$

and so

$$C^{1}_{n}= \textstyle\begin{cases} 1, &n\text{ is even}, \\ 0, &n\text{ is odd}. \end{cases} $$

Therefore, series (5) is not summable by \((C,1)\) means.

If we take \(a_{n,k}=\frac{1}{n+1}\), then series (5) is also not summable by T means. But series (5) is summable by \(T.C^{1}\) means. So, the product means is more powerful than the individual means.

Remark 2

\(TC^{1}\) means reduces to

  1. (i)

    \((H,\frac{1}{r+1})C^{1}\) or \(H.C^{1}\) means if \(a_{r,m}= \frac{1}{(r-m+1)\log(r+1)}\);

  2. (ii)

    \((N,p_{r})C^{1}\) or \(N_{p}C^{1}\) means if \(a_{r,m}=\frac {p_{r-m}}{P_{r}}\), where \(P_{r}=\sum_{m=0}^{r}p_{m} \neq0\);

  3. (iii)

    \((N,p,q)(C,1)\) or \(N_{p,q}C^{1}\) means if \(a_{r,m}=\frac {p_{r-m} q_{m}}{R_{r}}\), where \(R_{r}=\sum_{m=0}^{r}p_{m}q_{r-m}\);

  4. (iv)

    \((\bar{N},p_{r})(C,1)\) or \(\bar{N}_{p}C^{1}\) means if \(a_{r,m}=\frac{p_{m}}{P_{r}}\).

Let \(L^{z}[0,2\pi]= \{ g: [0,2\pi]\to\mathbb{R}: \int_{0}^{2\pi} |g(x)|^{z} \,dx <\infty, z\geq1\}\) be the space of functions (2π-periodic and integrable). We define the norm \(\|\cdot\|_{(z)}\) by

$$\biggl\{ \frac{1}{2\pi} \int_{0}^{2\pi} \bigl\vert g(x) \bigr\vert ^{z}\,dx \biggr\} ^{\frac {1}{z}},\quad z\geq1. $$

As defined in “[14], \(w:[0,2\pi] \to\mathbb{R}\) is an arbitrary function with \(w(l)>0\) for \(0< l\leq2\pi\) and \(\lim_{l\to 0^{+}}w(l)=w(0)=0\).” Now we define

$$H_{z}^{(w)}= \biggl\{ g\in L^{z}[0,2\pi]:\sup _{l\neq0} \frac {\|g(\cdot,+l)-g(\cdot)\|_{z}}{w(l)} < \infty,z\geq1 \biggr\} $$

and

$$\Vert\cdot\Vert_{z}^{(w)}= \Vert g \Vert_{z}^{(w)}= \Vert g \Vert_{z}+ \sup_{l\neq0} \frac{\Vert g(\cdot+l)-g(\cdot)\Vert_{z}}{w(l)} ; \quad z\geq1. $$

Note 1

\(w(l)\) and \(v(l)\) denote “Zygmund moduli of continuity [14].”

If we consider \(\frac{w(l)}{v(l)}\) as positive and non-decreasing,

$$\Vert g \Vert_{z}^{(v)}\leq\max \biggl(1, \frac{w(2\pi)}{v(2\pi)} \biggr) \Vert g\Vert_{z}^{(w)} < \infty. $$

Thus,

$$H_{z}^{(w)}\subset H_{z}^{(v)}\subset L^{z} ;\quad z\geq1. $$

Remark 3

  1. (i)

    If \(w(l)=l^{\alpha}\) in \(H^{(w)}\), \(H^{(w)}\) implies \(H_{\alpha}\) class.

  2. (ii)

    If \(w(l)=l^{\alpha}\) in \(H_{z}^{(w)}\), \(H^{(w)}\) implies \(H_{\alpha ,z}\) class.

  3. (iii)

    If \(z \to\infty\) in \(H_{z}^{(w)}\), \(H_{z}^{(w)}\) implies \(H^{(w)}\) class and \(H_{\alpha,z}\) class implies \(H_{\alpha}\) class.

Remark 4

We are not representing here the F. S. and C. F. S. as these trigonometric series are well known and the detailed work on these series can be found in [14].

We denote the rth partial sum of the F. S. as

$$s_{r}(g;x)-g(x)=\frac{1}{2\pi} \int_{0}^{\pi} \phi_{x}(l) \frac{\sin (r+\frac{1}{2})l}{\sin{\frac{l}{2}}}\,dl. $$

The rth partial sum of C. F. S. is defined as

$$s_{r}(\tilde{g};x)-\tilde{g}(x)=\frac{1}{2\pi} \int_{0}^{\pi} \psi _{x}(l) \frac{\cos(r+\frac{1}{2})l}{\sin(\frac{l}{2})}\,dl, $$

where

$$\tilde{g}=-\frac{1}{2\pi} \int_{0}^{\pi}\psi_{x}(l)\cot\biggl( \frac{l}{2}\biggr)\,dl. $$

“The error estimation of function g is given by

$$E_{r}(g)=\min\Vert g-t_{r}\Vert_{z}, $$

where \(t_{r}\) is a trigonometric polynomial of degree r [14].”

We write

$$\begin{aligned}& \phi_{x}(l) =\phi(x,l)=g(x+l)+g(x-l)-2g(x), \\& \psi_{x}(l) =\psi(x,l)=g(x+l)-g(x-l), \\& \Delta p_{m} =p_{m}-p_{m+1},\quad m\geq{0}, \\& H_{r}(l) =\frac{1}{2\pi}\sum_{m=0}^{r}a_{r,m} \frac{1}{m+1}\sum_{v=0}^{m} \frac{\sin(v+\frac{1}{2})l}{\sin(\frac{l}{2})}, \\& \tilde{H}_{r}(l) =\frac{1}{2\pi}\sum_{m=0}^{r}a_{r,m} \frac{1}{m+1}\sum_{v=0}^{m} \frac{\cos(v+\frac{1}{2})l}{\sin(\frac{l}{2})}. \end{aligned}$$

2 Main theorems

Theorem 2.1

If \(g\in H_{z}^{(w)}\) class; \(z\geq1\) and \(\frac{w(l)}{v(l)}\) are positive and non-decreasing, then the error estimation of g by \(TC^{1}\) means of F. S. is

$$\bigl\Vert t_{r}^{T.C^{1}}-g \bigr\Vert _{z}^{(v)} =O \biggl( \frac{1}{r+1} \int _{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)}\,dl \biggr), $$

where \(T=(a_{r,m})\) is an infinite triangular matrix satisfying (1) and w, v are defined as in Note 1 provided

$$ \sum_{m =0}^{r-1}|\Delta a_{r,m}|=O \biggl(\frac{1}{r+1} \biggr) \quad \textit {and}\quad (r+1)a_{r,r}=O(1). $$
(6)

Theorem 2.2

If \(\tilde{g}\in H_{z}^{(w)}\) class; \(z\geq1\) and \(\frac{w(l)}{v(l)}\) are positive and non-decreasing, then the error estimation of by \(TC^{1}\) means of C. F. S. is

$$\bigl\Vert \tilde{t_{r}}^{T.C^{1}} -\tilde{g} \bigr\Vert _{z}^{(v)}=O \biggl( \frac{(\log (r+1)+1)}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)}\,dl \biggr), $$

where \(T=(a_{r,m})\) is an infinite triangular matrix satisfying (1), (6) and w, v are defined as in Note 1.

3 Lemmas

Lemma 3.1

Under condition (1), \(H_{r}(l)=O(r+1)\) for \(0< l<\frac{1}{r+1}\).

Proof

For \(0< l<\frac{1}{r+1}\), \(\sin(\frac{l}{2}) \geq\frac{l}{\pi}\), \(\sin (r l) \leq r l\).

$$\begin{aligned}& H_{r}(l)=\frac{1}{2\pi} \sum_{m=0}^{r}a_{r,m} \frac{1}{m+1} \sum_{v=0}^{m} \frac{\sin(v+\frac{1}{2})l}{\sin(\frac{l}{2})}, \\& \begin{aligned} \bigl\vert H_{r}(l) \bigr\vert & \leq \frac{1}{2\pi} \times\frac{\pi}{l} \Biggl\vert \sum _{m=0}^{r}a_{r,m}\frac{1}{m+1}\sum _{v=0}^{m}\sin\biggl(v+\frac{1}{2} \biggr)l \Biggr\vert \\ & = \frac{1}{2l} \Biggl\vert \sum_{m=0}^{r}a_{r,m} \frac{1}{m+1} \sum_{v=0}^{m}\sin(2v+1) \frac{l}{2} \Biggr\vert \\ & \leq\frac{1}{2l} \Biggl\vert \sum_{m=0}^{r} a_{r,m} \frac{1}{m+1} \sum_{v=0}^{m}(2v+1) \frac{l}{2} \Biggr\vert \\ &=\frac{1}{4} \Biggl\vert \sum_{m=0}^{r}a_{r,m} \frac{1}{m+1}\sum_{v=0}^{m}(2v+1) \Biggr\vert \\ & = \frac{1}{4} \Biggl\vert \sum_{m=0}^{r} a_{r,m} \frac{1}{m+1} \times (m+1)^{2} \Biggr\vert \\ & = \frac{1}{4} \Biggl\vert \sum_{m=0}^{r}a_{r,m}(m+1) \Biggr\vert \\ & = \frac{1}{4}(m+1)\sum_{m=0}^{r}|a_{r,m}| \\ &=O(r+1). \end{aligned} \end{aligned}$$

 □

Lemma 3.2

Under conditions (1) and (6), \(H_{r}(l)=O ( \frac{1}{(r+1)l^{2}} )\) for \(\frac{1}{r+1} \leq l \leq\pi\).

Proof

For \(\frac{1}{r+1} \leq l \leq\pi\), \(\sin(\frac{l}{2}) \geq\frac {l}{\pi}\), \(\sin^{2}{r}l \leq1\) and using Abel’s lemma, we have

$$\begin{aligned}& H_{r}(l) = \frac{1}{2\pi}\sum_{m=0}^{r}a_{r,m} \frac{1}{r+1} \sum_{v=0}^{r} \frac{\sin(v+\frac{1}{2})l}{\sin(\frac{l}{2})}, \\& \bigl\vert H_{r}(l) \bigr\vert \leq\frac{1}{2\pi} \times \frac{\pi}{l} \Biggl\vert \sum_{m=0}^{r}a_{r,m} \frac{1}{m+1} \sum_{v=0}^{m} \sin \biggl(v+\frac{1}{2}\biggr)l \Biggr\vert \\& \hphantom{ \vert H_{r}(l) \vert } = \frac{1}{2l} \Biggl\vert \sum _{m=0}^{r}a_{r,m} \frac{1}{m+1} \operatorname{Im} \Biggl\{ \sum_{v=0}^{m} e^{i(v+\frac{1}{2})l} \Biggr\} \Biggr\vert \\& \hphantom{ \vert H_{r}(l) \vert } = \frac{1}{2l} \Biggl\vert \sum _{m=0}^{r} a_{r,m} \frac{1}{m+1} \operatorname{Im} \Biggl\{ e^{i\frac{l}{2}} \sum_{v=0}^{m}e^{ivl} \Biggr\} \Biggr\vert \\& \hphantom{ \vert H_{r}(l) \vert } = \frac{1}{2l} \Biggl\vert \sum _{m=0}^{r} a_{r,m} \frac{1}{m+1} \operatorname{Im} \biggl\{ e^{\frac{il}{2}} \frac{1-e^{i(m+1)l}}{1-e^{il}} \biggr\} \Biggr\vert \\& \hphantom{ \vert H_{r}(l) \vert } = \frac{1}{2l} \Biggl\vert \sum _{m=0}^{r}a_{r,m} \frac{1}{m+1} \operatorname{Im} \biggl\{ \frac{e^{i(m+1)l}-1}{2i\sin(\frac{l}{2})} \biggr\} \Biggr\vert \\& \hphantom{ \vert H_{r}(l) \vert } \leq\frac{1}{2l} \times\frac{\pi}{l} \Biggl\vert \sum_{m=0}^{r} a_{r,m} \frac{1}{m+1} \sin^{2}(m+1) \frac{l}{2} \Biggr\vert \\& \hphantom{ \vert H_{r}(l) \vert } \leq\frac{\pi}{2l^{2}} \Biggl\vert \sum _{m=0}^{r} a_{r,m} \frac {1}{m+1} \Biggr\vert \\& \hphantom{ \vert H_{r}(l) \vert } = \frac{\pi}{2l^{2}} \Biggl\vert \sum _{m=0}^{r-1}(a_{r,m}-a_{r,m+1})\sum _{v=0}^{m}\frac{1}{v+1} +a_{r,r} \sum_{m=0}^{r} \frac{1}{m+1} \Biggr\vert \\& \hphantom{ \vert H_{r}(l) \vert } \leq \frac{\pi}{2l^{2}} \Biggl\vert \sum _{m=0}^{r-1} \Delta a_{r,m}\sum _{v=0}^{m}\frac{1}{v+1} \Biggr\vert + a_{r,r} \Biggl\vert \sum_{m=0}^{r} \frac {1}{m+1} \Biggr\vert \\& \hphantom{ \vert H_{r}(l) \vert } \leq\frac{\pi}{2l^{2}} \Biggl[ \sum _{m=0}^{r-1} |\Delta a_{r,m}| +a_{r,r} \Biggr] \max_{0\leq m \leq d} \Biggl\vert \sum _{m=0}^{d}\frac{1}{m+1} \Biggr\vert \\& \hphantom{ \vert H_{r}(l) \vert } =O \biggl( \frac{1}{(r+1)l^{2}} \biggr). \end{aligned}$$

 □

Lemma 3.3

Under condition (1), \(\tilde{H_{r}}(l)=O(\frac{1}{l})\) for \(0< l<\frac{1}{r+1}\).

Proof

For \(0< l\leq\frac{1}{r+1}\), using \(\sin(\frac{l}{2}) \geq\frac{l}{\pi }\) and \(|\cos{rl}| \leq1\), we obtain

$$\begin{aligned}& \tilde{H_{r}}(l) =\frac{1}{2\pi} \sum _{m=0}^{r}a_{r,m} \frac{1}{m+1} \sum _{v=0}^{m} \frac{\cos(v+\frac{1}{2})l}{\sin(\frac{l}{2})}, \\& \begin{aligned} \bigl\vert \tilde{H_{r}}(l) \bigr\vert & \leq \frac{1}{2\pi} \times\frac{\pi}{l} \sum_{m=0}^{r} a_{r,m} \frac{1}{m+1} \sum_{v=0}^{m} \biggl|\cos\biggl(v+\frac{1}{2}\biggr)l\biggr| \\ & \leq\frac{1}{2l} \sum_{m=0}^{r} a_{r,m} \frac{1}{m+1} \sum_{v=0}^{m}1 \\ &\leq\frac{1}{2l} \sum_{m=0}^{r} a_{r,m}, \end{aligned} \\& \therefore\tilde{H_{r}}(l)= O \biggl( \frac{1}{l} \biggr). \end{aligned}$$

 □

Lemma 3.4

Under conditions (1) and (6), \(\tilde{H_{r}}(l)=O(\frac {1}{(r+1)l^{2}})\) for \(\frac{1}{r+1} \leq l \leq\pi\).

Proof

For \(\frac{1}{r+1} \leq l \leq\pi\), using \(\sin(\frac{l}{2}) \geq \frac{l}{\pi}\), Abel’s lemma, and \(\vert \sum_{m=0}^{r}\frac{\sin (m+1)l}{m+1} \vert \leq1+\frac{\pi}{2}\) r and l [15], we get

$$\begin{aligned} &\bigl\vert \tilde{H_{r}}(l) \bigr\vert \\ &\quad \leq\frac{1}{2\pi} \times\frac{\pi}{l} \Biggl\vert \sum_{m=0}^{r} a_{r,m} \frac{1}{m+1} \sum_{v=0}^{m} \cos\biggl(v+\frac {1}{2}\biggr)l \Biggr\vert \\ &\quad \leq\frac{1}{2l} \Biggl\vert \sum_{m=0}^{r} a_{r,m} \frac{1}{m+1} \biggl\{ \frac{2\sin(\frac{l}{2}) \cos\frac{l}{2}+ 2\sin(\frac{l}{2}) \cos \frac{3l}{2} +\cdots+ 2\sin(\frac{l}{2}) \cos(\frac{(2m+1)l}{2}) }{ 2\sin(\frac{l}{2})} \biggr\} \Biggr\vert \\ &\quad \leq\frac{1}{4l} \times\frac{\pi}{l} \Biggl\vert \sum _{m=0}^{r} a_{r,m} \frac{1}{m+1} \bigl\{ \sin{l} +\sin{2l} - \sin{l} + \sin{3l} - \sin{2l} + \cdots \\ &\qquad {}+ \sin{(m+1)l} -\sin{m l} \bigr\} \Biggr\vert \\ &\quad \leq\frac{\pi}{4l^{2}} \Biggl\vert \sum_{m=0}^{r} a_{r,m} \frac{\sin(m+1)l}{m+1} \Biggr\vert \\ &\quad \leq\frac{\pi}{4l^{2}} \Biggl\vert \sum_{m=0}^{r-1} (a_{r,m}-a_{r,m+1}) \sum_{v=0}^{m} \frac{\sin(v+1)l}{v+1} +a_{r,r} \sum_{m=0}^{r} \frac{\sin (m+1)l}{m+1} \Biggr\vert \\ &\quad \leq\frac{\pi}{4l^{2}} \Biggl[ \sum_{m=0}^{r-1}| \Delta a_{r,m}| \Biggl\vert \sum_{v=0}^{m} \frac{\sin(v+1)l}{v+1} \Biggr\vert +a_{r,r} \Biggl\vert \sum _{m=0}^{r} \frac{\sin(m+1)l}{m+1} \Biggr\vert \Biggr] \\ &\quad \leq \Biggl[ \frac{1}{l^{2}} \Biggl( \sum_{m=0}^{r-1}| \Delta a_{r,m}| +a_{r,r} \Biggr) \Biggr]. \\ &\quad = \biggl[\frac{1}{l^{2}} \biggl\{ O \biggl(\frac{1}{r+1} \biggr)+O \biggl(\frac{1}{r+1} \biggr) \biggr\} \biggr] \\ &\quad =O \biggl(\frac{1}{(r+1)l^{2}} \biggr). \end{aligned}$$

 □

Lemma 3.5

(“([16], p. 93)”)

Let \(g\in{H_{z}}^{(w)}\), then for \(0< l\leq\pi\):

  1. (i)

    \(\Vert\phi(\cdot,l)\Vert_{z}=O(w(l))\);

  2. (ii)

    \(\Vert\phi(\cdot+y,l)-\phi(\cdot,l)\Vert_{z}= \scriptsize{\big\{\begin{array}{l} O(w(l)),\\ O(w(|y|)); \end{array}} \)

  3. (iii)

    If \(w(l)\) and \(v(l)\) are defined as in Note 1, then \(\Vert\phi(\cdot+y,l)-\phi(\cdot,l)\Vert_{z}=O (v( \vert y \vert ) (\frac {w(l)}{v(l)} ) )\).

Lemma 3.6

Let \(\tilde{g}\in{H_{z}}^{(w)}\), then for \(0< l\leq\pi\):

  1. (i)

    \(\Vert\psi(\cdot,l)\Vert_{z}=O(w(l))\);

  2. (ii)

    \(\Vert\psi(\cdot+y,l)-\psi(\cdot,l)\Vert_{z}= \scriptsize{\bigl\{\begin{array}{l} O(w(l)),\\ O(w(|y|)); \end{array}\bigr.} \)

  3. (iii)

    If \(w(l)\) and \(v(l)\) are defined as in Note 1, then \(\Vert \psi(\cdot+y,l)-\psi(\cdot,l) \Vert _{z}=O (v( \vert y \vert ) (\frac {w(l)}{v(l)} ) )\).

Proof

This lemma can be proved along the same lines as the proof of Lemma 3.5(iii). □

4 Proof of the main theorems

4.1 Proof of Theorem 2.1

Proof

Following Titchmarsh [17], \(s_{r}(g;x)\) of F. S. is given by

$$ s_{r}(g;x)- g(x) = \frac{1}{2\pi} \int_{0}^{\pi} \phi_{x}(l) \frac {\sin(m+\frac{1}{2})l}{\sin(\frac{l}{2})} \,dl. $$

Now, denoting \(T.C^{1}\) transform of \(s_{r}(g;x)\) by \({t_{r}}^{T.C^{1}}\),

$$\begin{aligned}& \begin{aligned} {t_{r}}^{T.C^{1}}(x)- g(x) & = \sum _{m=0}^{r} a_{r,m} \bigl(C_{m}^{1}(x)- g(x) \bigr) \\ & = \sum_{m=0}^{r} a_{r,m} \Biggl( \frac{1}{m+1} \sum_{v=0}^{m} s_{v}(g;x)-g(x) \Biggr) \\ &= \int_{0}^{\pi} \phi_{x}(l) \Biggl( \frac{1}{2\pi} \sum_{m=0}^{r} a_{r,m} \frac{1}{m+1} \sum_{v=0}^{m} \frac{\sin(v+\frac{1}{2})l}{\sin (\frac{l}{2})} \Biggr) \,dl, \end{aligned} \\& {t_{r}}^{T.C^{1}}(x)- g(x) = \int_{0}^{\pi} \phi_{x}(l) {H_{r}}(l)\,dl. \end{aligned}$$
(7)

Let

$$ R_{r}(x)={t_{r}}^{T.C^{1}}(x)- g(x) = \int_{0}^{\pi} \phi_{x}(l) {H_{r}}(l)\,dl. $$
(8)

Then

$$ R_{r}(x+y)-R_{r}(x) = \int_{0}^{\pi} \bigl( \phi(x+y,l)-\phi(x,l) \bigr) {H_{r}(l)}\,dl. $$

“Using generalized Minkowski’s inequality Chui [18],” we get

$$\begin{aligned} \bigl\Vert R_{r}(\cdot,+y)-R_{r}(\cdot)\bigr\Vert _{z} & \leq \int_{0}^{\pi} \bigl\Vert \phi (\cdot+y,l)-\phi(\cdot,l) \bigr\Vert _{z} H_{r}(l)\,dt \\ &= \biggl( \int_{0}^{\frac{1}{r+1}} + \int_{\frac{1}{r+1}}^{\pi} \biggr) \bigl\Vert \phi(\cdot+y,l)-\phi( \cdot,l) \bigr\Vert _{z} H_{r}(l)\,dl \\ &=I_{1}+I_{2}. \end{aligned}$$
(9)

Using Lemmas 3.1 and 3.5(iii), we have

$$\begin{aligned} I_{1} &= \int_{0}^{\frac{1}{r+1}} \bigl\Vert \phi(\cdot+y,l)-\phi( \cdot,l) \bigr\Vert _{z} H_{r}(l)\,dl \\ &=O(r+1) \biggl( v\bigl( \vert y \vert \bigr) \int_{0}^{\frac{1}{r+1}} \frac{w(l)}{v(l)} \,dl \biggr) \\ &=O \biggl( v\bigl( \vert y \vert \bigr) \frac{w(\frac{1}{r+1})}{v(\frac{1}{r+1})} \biggr). \end{aligned}$$
(10)

Also, using Lemmas 3.2 and 3.5(iii), we get

$$\begin{aligned} I_{2} &= \int_{\frac{1}{r+1}}^{\pi} \bigl\Vert \phi(\cdot+y,l)-\phi( \cdot,l) \bigr\Vert _{z} H_{r}(l)\,dl \\ &=O \biggl(\frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} v\bigl( \vert y \vert \bigr) \frac {w(l)}{l^{2}v(l)} \,dl \biggr). \end{aligned}$$
(11)

By (9), (10), and (11), we have

$$ \sup_{y \neq0} \frac{\Vert R_{r}(\cdot,+y)-R_{r}(\cdot)\Vert_{z}}{v(|y|)} =O \biggl( \frac{w(\frac{1}{r+1})}{v(\frac{1}{r+1})} \biggr) + O \biggl( \frac {1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)} \,dl \biggr). $$
(12)

Again applying Minkowski’s inequality, Lemma 3.1, Lemma 3.2, and \(\Vert \phi(\cdot,l) \Vert_{z}=O(w(l))\), we obtain

$$\begin{aligned} \bigl\Vert R_{r}(\cdot) \bigr\Vert _{z} &= \bigl\Vert t_{r}^{T.C^{1}}-g \bigr\Vert _{z} \\ &\leq \biggl( \int_{0}^{\frac{1}{r+1}}+ \int_{\frac{1}{r+1}}^{\pi} \biggr) \bigl\Vert \phi(\cdot,l) \bigr\Vert _{z} H_{r}(l)\,dl \\ &=O \biggl( (r+1) \int_{0}^{\frac{1}{r+1}} w(l) \,dl \biggr)+O \biggl( \frac {1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}} \,dl \biggr) \\ &= O \biggl( w \biggl(\frac{1}{r+1} \biggr) \biggr)+O \biggl( \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}} \,dl \biggr). \end{aligned}$$
(13)

Now, we have

$$ \bigl\Vert R_{r}(\cdot) \bigr\Vert _{z}^{v} = \bigl\Vert R_{r}(\cdot) \bigr\Vert _{z}+ \sup_{y\neq0} \frac{\Vert R_{r}(\cdot,+y)-R_{r}(\cdot)\Vert_{z}}{v(|y|)}. $$
(14)

Using (12) and (13), we get

$$\begin{aligned} \bigl\Vert R_{r}(\cdot) \bigr\Vert _{z}^{v} &= O \biggl( w \biggl(\frac{1}{r+1} \biggr) \biggr)+ O \biggl( \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac {w(l)}{l^{2}} \,dl \biggr) \\ &\quad {}+ O \biggl( \frac{w (\frac{1}{r+1} )}{v ( \frac {1}{r+1} )} \biggr)+ O \biggl( \frac{1}{r+1} \int_{\frac {1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)} \,dl \biggr). \end{aligned}$$
(15)

By the monotonicity of \(v(l)\), \(w(l)=\frac{w(l)}{v(l)} v(l) \leq v(\pi ) \frac{w(l)}{v(l)}\) for \(0< l\leq\pi\), we get

$$ \bigl\Vert R_{r}(\cdot) \bigr\Vert _{z}^{v} =O \biggl( \frac{w(\frac{1}{r+1})}{v(\frac {1}{r+1})} \biggr)+O \biggl( \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)} \,dl \biggr). $$
(16)

Since w and v are moduli of continuity such that \(\frac {w(l)}{v(l)}\) is positive and non-decreasing, therefore

$$ \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi}\frac{w(l)}{l^{2}v(l)}\,dl \geq \frac{w(\frac{1}{r+1})}{v(\frac{1}{r+1})} \biggl(\frac{1}{r+1} \biggr) \int _{\frac{1}{r+1}}^{\pi} \frac{1}{l^{2}}\,dl \geq \frac{w ( \frac {1}{r+1} )}{2v ( \frac{1}{r+1} )}. $$

Then

$$ \frac{w ( \frac{1}{r+1} )}{v ( \frac{1}{r+1} )} =O \biggl( \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac {w(l)}{l^{2}v(l)} \,dl\biggr). $$
(17)

From (16) and (17), we get

$$ \begin{aligned} & \bigl\Vert R_{r}(\cdot) \bigr\Vert _{z}^{(v)}=O \biggl(\frac{1}{r+1} \int_{\frac {1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)}\,dl \biggr), \\ & \bigl\Vert t_{r}^{T.C^{1}}-g \bigr\Vert _{z}^{(v)}=O \biggl(\frac{1}{r+1} \int _{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)} \,dl\biggr). \end{aligned} $$
(18)

 □

4.2 Proof of Theorem 2.2

Proof

The integral representation of \(s_{r}(\tilde{g};x)\) is given by

$$ s_{r}(\tilde{g};x)- \tilde{g}(x) = \frac{1}{2\pi} \int_{0}^{\pi} \psi _{x}(l) \frac{\cos(r+\frac{1}{2})l}{\sin(\frac{l}{2})} \,dl. $$

Now, denoting \(T.C^{1}\) transform of \(s_{r}(\tilde{g};x)\) by \(\tilde {t_{r}}^{T.C^{1}}\), we get

$$\begin{aligned}& \begin{aligned} \tilde{t_{r}}^{T.C^{1}}(x)- \tilde{g}(x) & = \sum _{m=0}^{r} a_{r,m} \bigl(C_{m}^{1}(x)- \tilde{g}(x) \bigr) \\ & = \sum_{m=0}^{r} a_{r,m} \Biggl( \frac{1}{m+1} \sum_{v=0}^{m} s_{v}(\tilde{g};x)-\tilde{g}(x) \Biggr) \\ &= \int_{0}^{\pi} \psi_{x}(l) \Biggl( \frac{1}{2\pi} \sum_{m=0}^{r} a_{r,m} \frac{1}{m+1} \sum_{v=0}^{m} \frac{\cos(v+\frac{1}{2})}{\sin (\frac{l}{2})} \Biggr) \,dl, \end{aligned} \\& \tilde{t_{r}}^{T.C^{1}}(x)- \tilde{g}(x) = \int_{0}^{\pi} \psi_{x}(l) \tilde{H_{r}}(l)\,dl. \end{aligned}$$

Let

$$ \tilde{R}_{r}(x) =\tilde{t}_{r}^{T.C^{1}}(x)- \tilde{g}(x)= \int_{0}^{\pi }\psi_{x}(l) \tilde{H}_{r} \,dl. $$

Then

$$ \tilde{R}_{r}(x+y)-\tilde{R}_{r}(x)= \int_{0}^{\pi} \bigl\{ \psi _{x}(x+y,l)- \psi_{x}(x,l) \bigr\} \tilde{H}_{r}(l)\,dl. $$

Using “generalized Minkowski’s inequality Chui [18],” we get

$$\begin{aligned} \bigl\Vert \tilde{R}_{r}(\cdot+y)-\tilde{R}_{r}(\cdot) \bigr\Vert _{z} & \leq \int_{0}^{\pi } \bigl\Vert \psi_{x}( \cdot+y,l) \bigr\Vert _{z} \tilde{H}_{r}(l)\,dl \\ &= \biggl( \int_{0}^{\frac{1}{r+1}}+ \int_{\frac{1}{r+1}}^{\pi} \biggr) \bigl\Vert \psi(\cdot+y,l)- \psi(\cdot,l) \bigr\Vert _{z} \tilde{R}_{r}(l)\,dl \\ &= I_{1}+I_{2}. \end{aligned}$$
(19)

Using Lemmas 3.3 and 3.6(iii), we have

$$\begin{aligned} I_{1} & = \int_{0}^{\frac{1}{r+1}} \bigl\Vert \psi(\cdot+y,l)-\psi( \cdot,l) \bigr\Vert _{z} \tilde{H_{r}}(l)\,dl \\ &= O \biggl( v\bigl( \vert y \vert \bigr) \frac{w(\frac{1}{r+1})}{ v(\frac{1}{r+1})} \int _{0}^{\frac{1}{r+1}} \frac{1}{l}\,dl \biggr) \\ &=O \biggl( v\bigl( \vert y \vert \bigr) \frac{w(\frac{1}{r+1})}{v(\frac{1}{r+1})} \log(r+1) \biggr). \end{aligned}$$
(20)

Again using Lemmas 3.4 and 3.6(iii), we have

$$\begin{aligned} I_{2} &= \int_{\frac{1}{r+1}}^{\pi} \bigl\Vert \psi(\cdot+y,l)-\psi( \cdot,l) \bigr\Vert _{z} \tilde{H_{r}}(l)\,dl \\ &=O \biggl( \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} v\bigl(|y|\bigr) \frac {w(l)}{l^{2} v(l)} \,dl \biggr). \end{aligned}$$
(21)

Using (19), (20), and (21), we have

$$ \sup_{y \neq0} \frac{\Vert\tilde{R}_{r}(\cdot+y)-\tilde{R}_{r}(\cdot) \Vert _{z}}{v(|y|)}= O \biggl( \frac{w(\frac{1}{r+1})}{v(\frac{1}{r+1})}\log (r+1) \biggr)+O \biggl( \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac {w(l)}{l^{2} v(l)} \,dl \biggr). $$
(22)

Again applying Minkowski’s inequality, Lemma 3.3, Lemma 3.4, and \(\Vert \psi(\cdot,l)\Vert_{z}= O(w(l))\), we have

$$\begin{aligned} \bigl\Vert \tilde{R_{r}}(\cdot) \bigr\Vert _{z} &= \bigl\Vert \tilde{t_{r}}^{T.C^{1}}-\tilde {g}\bigr\Vert _{z} \leq \biggl( \int_{0}^{\frac{1}{r+1}} + \int_{\frac{1}{r+1}}^{\pi } \biggr) \bigl\Vert \psi(\cdot,l)\bigr\Vert _{z} \tilde{H_{r}}(l)\,dl \\ &= O \biggl( \int_{0}^{\frac{1}{r+1}}\frac{w(l)}{l}\,dl \biggr)+ O \biggl( \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}}\,dl \biggr) \\ & = O \biggl( w \biggl(\frac{1}{r+1} \biggr) \log(r+1) \biggr)+ O \biggl( \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}}\,dl \biggr). \end{aligned}$$
(23)

Now, we have

$$ \bigl\Vert \tilde{R_{r}}(\cdot) \bigr\Vert _{z}^{(v)} = \bigl\Vert \tilde{R_{r}}(\cdot) \bigr\Vert _{z}+\sup _{y \neq0} \frac{ \Vert \tilde{R}_{r}(\cdot+y)-\bar{R}_{r}(\cdot) \Vert _{z}}{v(|y|)}. $$

Using (22) and (23), we get

$$\begin{aligned} \bigl\Vert \tilde{R_{r}}(\cdot) \bigr\Vert _{z}^{(v)}&= O \biggl( \bigl(\log(r+1)\bigr) w \biggl(\frac{1}{r+1} \biggr) \biggr)+O \biggl( \frac{1}{r+1} \int_{\frac {1}{r+1}}^{\pi} \frac{w(l)}{l^{2}}\,dl \biggr) \\ &\quad {} + O \biggl( \frac{w(\frac{1}{r+1})}{v(\frac{1}{r+1})} \log(r+1) \biggr)+O \biggl( \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac {w(l)}{l^{2}v(l)}\,dl \biggr). \end{aligned}$$

By the monotonicity of \(v(l)\), we have \(w(l)=\frac{w(l)}{v(l)}v(l)\leq v(\pi) \frac{w(l)}{v(l)}\), \(0< l\leq\pi\), we get

$$ \bigl\Vert \tilde{R_{r}}(\cdot) \bigr\Vert _{z}^{(v)}=O \biggl( \frac{w(\frac {1}{r+1})}{v(\frac{1}{r+1})} \log(r+1) \biggr)+ O \biggl( \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)}\,dl \biggr). $$
(24)

Using the fact that \(\frac{w(l)}{v(l)}\) is positive and non-decreasing, we have

$$\begin{aligned} \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)}\,dl & \geq \frac{w(\frac{1}{r+1})}{v(\frac{1}{r+1})} \frac{1}{r+1} \int_{\frac {1}{r+1}}^{\pi} \frac{1}{l^{2}}\,dl \\ & \geq\frac{w(\frac{1}{r+1})}{2v(\frac{1}{r+1})}. \end{aligned}$$

Then

$$ \frac{w(\frac{1}{r+1})}{v(\frac{1}{r+1})} = O \biggl( \frac{1}{r+1} \int _{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)}\,dl \biggr). $$
(25)

From (24) and (25), we get

$$ \begin{aligned} & \bigl\Vert \tilde{R_{r}}(\cdot) \bigr\Vert _{z}^{(v)}=O \biggl( \frac{\log(r+1)}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)} \,dl \biggr)+O \biggl( \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)} \,dl \biggr), \\ &\therefore \bigl\Vert \tilde{t_{r}}^{T.C^{1}} -\tilde{g} \bigr\Vert _{z}^{(v)}= O \biggl( \frac{\log(r+1)+1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac {w(l)}{l^{2}v(l)} \,dl \biggr). \end{aligned} $$
(26)

 □

5 Corollary

Corollary 5.1

Let \(0 \leq\beta<\alpha\leq{1}\) and \(\tilde{g} \in H_{(\alpha),z}\); \(z\geq{1}\). Then

$$\bigl\Vert \tilde{t_{r}}^{T.C^{1}} -\tilde{g} \bigr\Vert _{(\beta),z}= \textstyle\begin{cases} O [ (\log(r+1)e)(r+1)^{\beta-\alpha} ]& \textit{if }0\leq {\beta}< \alpha< 1, \\ O [\frac{(\log(r+1)e)(\log(r+1) \pi)}{r+1} ] & \textit{if } \beta=0, \alpha=1. \end{cases} $$

Proof

Putting \(w(l)=l^{\alpha}\), \(v(l)=l^{\beta}\), \(0\leq\beta< \alpha\leq 1\) in (26)

$$\begin{aligned}& \bigl\Vert \tilde{t_{r}}^{T.C^{1}} -\tilde{g} \bigr\Vert _{(\beta),z} =O \biggl[ \frac{\log(r+1)e}{r+1} \int_{\frac{1}{r+1}}^{\pi} t^{\alpha-\beta-2} \,dl \biggr] \\& \quad \implies\quad \bigl\Vert \tilde{t_{r}}^{T.C^{1}} - \tilde{g} \bigr\Vert _{(\beta),z}= \textstyle\begin{cases} O ( \frac{(\log(r+1)e)}{(r+1)} \int_{\frac{1}{r+1}}^{\pi}l^{\alpha -\beta-2}\,dl )& \textit{if }0\leq{\beta}< \alpha< 1, \\ O ( \frac{\log(r+1)e}{r+1} \int_{\frac{1}{r+1}}^{\pi}l^{-1}\,dl ) & \textit{if }\beta=0, \alpha=1, \end{cases}\displaystyle \\& \therefore \bigl\Vert \tilde{t_{r}}^{T.C^{1}} -\tilde{g} \bigr\Vert _{(\beta),z}= \textstyle\begin{cases} O [ (\log(r+1)e)(r+1)^{\beta-\alpha} ]& \textit{if }0\leq {\beta}< \alpha< 1, \\ O [\frac{(\log(r+1)e)}{r+1} \times log(r+1)\pi ] & \textit{if } \beta=0, \alpha=1. \end{cases}\displaystyle \end{aligned}$$

 □

Corollary 5.2

Let \(0 \leq\beta<\alpha\leq{1}\), \(a,b \in\mathbb{R}\) and suppose \(w(l)=\frac{l^{\alpha}}{(\log\frac{1}{l})^{a}}\), \(w(l)=\frac{l^{\beta }}{(\log\frac{1}{l})^{b}}\), \(0< l\leq\pi\), \(\tilde{g} \in H_{z}^{(w)}\), \(z\geq{1}\). Then

$$\bigl\Vert \tilde{t_{r}}^{T.C^{1}} -\tilde{g} \bigr\Vert _{z}^{(v)}= \textstyle\begin{cases} O [ \frac{\log(r+1)e}{\{\log(r+1) \}^{b-a}} ]& \textit{if } \alpha=\beta \textit{ and } a-b \geq{-1}, \\ O [\frac{(\log(r+1)e)}{\log(r+1)} ] & \textit{if }\alpha =\beta \textit{ and } a-b=-1. \end{cases} $$

Proof

We have

$$\begin{aligned}& \begin{aligned} \bigl\Vert \tilde{t_{r}}^{T.C^{1}} - \tilde{f} \bigr\Vert _{z}^{(v)}&=O \biggl( \frac {\log(r+1)e}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{l^{\alpha }}{l^{2}(\log\frac{1}{l})^{a} \times\frac{l^{\beta}}{(\log\frac {1}{l})^{b}}}\,dl \biggr) \\ &= O \biggl( \frac{\log(r+1)e}{r+1} \int_{\frac{1}{r+1}}^{\pi} l^{\alpha -\beta-2} \biggl(\log \frac{1}{l}\biggr)^{b-a}\,dl \biggr) \end{aligned} \\& \therefore \bigl\Vert \tilde{t_{\eta}}^{T.C^{1}} -\tilde{g} \bigr\Vert _{z}^{(v)}= \textstyle\begin{cases} O [ \frac{\log(r+1)e}{\{\log(r+1) \}^{b-a}} ]& \text{if $\alpha=\beta\mbox{ and } a-b \geq{-1} $}.\\ O [\frac{(\log(r+1)e)}{\log(r+1)} ] & \text{if $\alpha =\beta\mbox{ and }a-b=-1$}. \end{cases}\displaystyle \end{aligned}$$

 □

Corollary 5.3

If \(a_{r,m}= \frac{1}{(r-m+1)\log(r+1)}\), then \(T.C^{1}\) means reduces to \((H, \frac{1}{r+1} )(C,1)\) means and error estimation of a function \(g\in H_{z}^{(w)}\) by \((H, \frac{1}{r+1})(C,1)\) means of F. S. is

$$\bigl\Vert t_{r}^{H.C^{1}}-g \bigr\Vert _{z}^{(v)}=O \biggl( \frac{1}{r+1} \int _{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)}\,dl \biggr). $$

Corollary 5.4

If \(a_{r,m}=\frac{p_{r-m}}{P_{r}}\), then \(T.C^{1}\) means reduces to \(N_{p}.C^{1}\) and the error estimation of \(g \in H_{v}^{(w)}\) by \(N_{p}.C^{1}\) means of F. S. is

$$\bigl\Vert t_{r}^{N_{p}.C^{1}}-g \bigr\Vert _{z}^{(v)}=O \biggl( \frac{1}{r+1} \int _{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)}\,dl \biggr). $$

Corollary 5.5

If \(a_{r,m}=\frac{p_{r-m}q_{m}}{R_{r}}\), then \(T.C^{1}\) means reduces to \(N_{p,q}.C^{1}\) and the error estimation of \(g \in H_{v}^{(w)}\) by \(N_{p,q}.C^{1}\) means of F. S. is

$$\bigl\Vert t_{r}^{N_{p,q}.C^{1}}-g \bigr\Vert _{z}^{(v)}=O \biggl( \frac{1}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac{w(l)}{l^{2}v(l)}\,dl \biggr). $$

Corollary 5.6

If \(a_{r,m}= \frac{1}{(r-m+1)\log(r+1)}\), then \(T.C^{1}\) means reduces to \((H, \frac{1}{r+1} )(C,1)\) means and the error estimation of a function \(\tilde{g}\in H_{z}^{(w)}\) by \((H, \frac{1}{r+1})(C,1)\) means of C. F. S. is

$$\bigl\Vert \tilde{t_{r}}^{H.C^{1}}-\tilde{g} \bigr\Vert _{z}^{(v)}=O \biggl( \frac {(\log(r+1)+1)}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac {w(l)}{l^{2}v(l)}\,dl \biggr). $$

Corollary 5.7

If \(a_{r,m}=\frac{p_{r-m}}{P_{r}}\), then \(T.C^{1}\) means reduces to \(N_{p}.C^{1}\) and the error estimation of \(\tilde{g} \in H_{v}^{(w)}\) by \(N_{p}.C^{1}\) means of C. F. S. is

$$\bigl\Vert \tilde{t_{r}}^{N_{p}.C^{1}}-\tilde{f} \bigr\Vert _{z}^{(v)}=O \biggl( \frac{(\log(r+1)+1)}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac {w(l)}{l^{2}v(l)}\,dl \biggr). $$

Corollary 5.8

If \(a_{r,m}=\frac{p_{r-m}q_{m}}{R_{r}}\), then \(T.C^{1}\) means reduces to \(N_{p,q}.C^{1}\) and the error estimation of \(\tilde{f} \in H_{v}^{(w)}\) by \(N_{p,q}.C^{1}\) means of C. F. S. is

$$\bigl\Vert \tilde{t_{r}}^{N_{p,q}.C^{1}}-\tilde{g} \bigr\Vert _{z}^{(v)}=O \biggl( \frac{(\log(r+1)+1)}{r+1} \int_{\frac{1}{r+1}}^{\pi} \frac {w(l)}{l^{2}v(l)}\,dl \biggr). $$

Remark 5

  1. (i)

    If \(z\to\infty\) in \(H_{z}^{(w)}\) class, then \(H_{z}^{(w)}\) class reduces to \(H^{(w)}\) class. Also putting \(w(l)=l^{\alpha}\) and \(v(l)=l^{\beta}\) in our Theorem 2.1, \(H^{(w)}\) class reduces to \(H_{\alpha}\) class; then, by putting \(\beta=0\) in \(H_{\alpha}\) class, \(H_{\alpha}\) class reduces to Lipα class.

  2. (ii)

    In our Theorem 2.1, by putting \(w(l)=l^{\alpha}\), \(v(l)=l^{\beta}\) in \(H_{z}^{(w)}\) class, \(H_{z}^{(w)}\) class reduces to \(H_{\alpha,z}\); then, by putting \(\beta=0\) in \(H_{\alpha,z}\) class, \(H_{\alpha,z}\) class reduces to \(\operatorname{Lip}(\alpha,z)\) class.

6 Particular cases

  1. 6.1.

    Using Remark 4(i), our Theorem 2.1 becomes a particular case of Dhakal [1].

  2. 6.2.

    Using Remark 4(ii) and putting \(a_{r,m}=\frac {p_{r-m}q_{m}}{R_{r}}\), where \(R_{r}=\sum_{m=0}^{r}p_{\mu}q_{r-m}\) in our of Theorem 2.1, our result of Theorem 2.1 becomes a particular case of the main theorem of Kushwaha and Dhakal [3].

  3. 6.3.

    Using Remark 4(i) and putting \(a_{r,m}=\frac {p_{r-m}q_{m}}{R_{r}}\), where \(R_{r}=\sum_{m=0}^{r}p_{m}q_{r-m}\) in our Theorem 2.1, our Theorem 2.1 becomes a particular case of the main theorem of Dhakal [2].

7 Conclusion

Approximation by trigonometric polynomials is at the heart of approximation theory. Much of the advances in the theory of trigonometric approximation are due to the periodicity of the functions. The study of error approximation of periodic functions in Lipschitz and Hölder classes has been of great interest among the researchers [111], and [12] in recent past. The trigonometric Fourier approximation (TFA) is of great importance due to its wide applications in different branches of engineering such as electronics and communication engineering, electrical and electronics engineering, computer science engineering, etc. Several elegant results on TFA can be found in a monograph [14].

In this paper, we, for the first time, obtain the best approximation of the functions g and in a generalized Hölder class \(H_{r}^{(w)}\) (\(r\geq1\)) using Matrix-\(C^{1}\) \((T.C^{1})\) method of F. S. and C. F. S. respectively. Since, in view of Remark 2, the product summability means \(H.C^{1}\), \(N_{p}C^{1}\), \(N_{p,q}C^{1}\), and \(\bar{N}_{p}C^{1}\) are the particular cases of Matrix-\(C^{1}\) method, so our results also hold for these methods, which are represented in a form of corollaries. In view of Remark 1, it has been shown that \((TC^{1})\) method is more powerful than the individual T method and \(C^{1}\) method. Moreover, in view of Remark 5, some previous results (see Sect. 6) become the particular cases of our Theorem 2.1. We also deduce a corollary for the \(H_{\alpha ,r}\) class (\(r\geq1\)).

Some other studies regarding the modulus of continuity (smoothness) of functions using more generalized functional spaces may be addressed as a future work.

References

  1. Dhakal, B.P.: Approximation of functions belonging to Lipα class by matrix-Cesàro summability method. Int. Math. Forum 5(35), 1729–1735 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Dhakal, B.P.: Approximation of a function f belonging to Lip class by \((N,p,q)C_{1}\) means of its Fourier series. Int. J. Eng. Technol. 2(3), 1–15 (2013)

    MathSciNet  Google Scholar 

  3. Kushwaha, J.K., Dhakal, B.P.: Approximation of a function belonging to \(\operatorname{Lip}(\alpha,r)\) class by \(N_{p,q}.C_{1}\) summability method of its Fourier series. Nepal J. Sci. Technol. 14(2), 117–122 (2013)

    Google Scholar 

  4. Khatri, K.: Degree of approximation of functions \(\tilde{f} \in H_{w}\) class by the \((N_{p}.E_{1})\) means in the Hölder metric. Int. J. Math. Math. Sci. 2014, Article ID 837408 (2014)

    MathSciNet  Google Scholar 

  5. Khatri, K., Mishra, V.N.: Degree of approximation by the \(T.E^{1}\) means of conjugate series of Fourier series in the Hölder metric. Iran. J. Sci. Technol., Trans. A Sci. (2017). https://doi.org/10.1007/s40995-017-0272-3

    Article  Google Scholar 

  6. Mishra, L.N.: On existence and behaviour of solutions to some nonlinear integral equations with applications. Ph.D. thesis, National Institute of Technology, Silchar 788 010, Assam, India (2017)

  7. Mishra, V.N., Khatri, K., Mishra, L.N., Deepmala: Trigonometric approximation of periodic signals belonging to generalized weighted Lipschitz \(W(L_{r}, \xi(t))\) (\(r\geq1\))-class by Nörlund–Euler \((N, p_{n})(E,q)\) operator of conjugate series of its Fourier series. J. Class. Anal. 5(2), 91–105 (2014). https://doi.org/10.7153/jca-05-08

    Article  MathSciNet  Google Scholar 

  8. Mishra, L.N., Mishra, V.N., Khatri, K., Deepmala: On the trigonometric approximation of signals belonging to generalized weighted Lipschitz \(W(L^{r}, \xi(t))\ (r \geq1)\)-class by matrix \(C^{1}.N_{p}\) operator of conjugate series of its Fourier series. Appl. Math. Comput. 237, 252–263 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Mishra, V.N., Khatri, K., Mishra, L.N.: Product \((N,p_{n})C_{1}\) summability of a sequence of Fourier coefficients. Math. Sci. 6, 38 (2012)

    Article  Google Scholar 

  10. Mishra, V.N., Mishra, L.N.: Trigonometric approximation of signals (functions) in \(L_{p}\ (p\geq1)\)-norm. Int. J. Contemp. Math. Sci. 7(19), 909–918 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Mittal, M.L., Rhoades, B.E., Mishra, V.N., Singh, U.: Using infinite matrices to approximate functions of class \(\operatorname{Lip}(\alpha,p)\) using trigonometric polynomials. J. Math. Anal. Appl. 326, 667–676 (2007)

    Article  MathSciNet  Google Scholar 

  12. Tiwari, K.S., Bariwal, C.S.: The degree of approximation of functions in the Hölder metric by triangular matrix method of Fourier series. Int. J. Pure Appl. Math. 76(2), 227–232 (2012)

    MATH  Google Scholar 

  13. Töeplitz, O.: Uberallagemeine lineara Mittelbil. dunger. P.M.F. 22, 113–119 (1913)

    Google Scholar 

  14. Zygmund, A.: Trigonometric Series, 3rd edn. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  15. Gronwall, T.H.: Über die Gibbssche Erscheinung und die trigonometrische summen \(\sin x + (1/2)\sin2x + (1/3)\sin3x + \cdots+ (1/n)\sin nx\). Math. Ann. 72, 228–243 (1912)

    Article  MathSciNet  Google Scholar 

  16. Lal, S., Mishra, A.: The method of summation \((E,1)(N,p_{n})\) and trigonometric approximation of function in generalized Holder metric. J. Indian Math. Soc. 80(1–2), 87–98 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Titchmarsh, E.C.: The Theory of Functions. Oxford University Press, London (1939)

    MATH  Google Scholar 

  18. Chui, C.K.: An Introduction to Wavelets: Wavelet Analysis and Applications, vol. 1. Academic Press, San Diego (1992)

    Book  Google Scholar 

Download references

Acknowledgements

The first author expresses his gratitude towards his mother for her blessings. The first author also expresses his gratitude towards his father in heaven, whose soul is always guiding and encouraging him. The second author is thankful to the University Grants Commission (India) for providing Junior Research Fellowship (JRF) to carry out the present work as a part of PhD degree. The second author also expresses his gratitude towards his parents for blessings and is very grateful to his guide Dr. H. K. Nigam without whose help he couldn’t complete his work. Both the authors are also grateful to the Hon’ble vice-chancellor, Central University of South Bihar, for motivation to carry out this work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HK framed the problems. HK and MH carried out the results and wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to H. K. Nigam.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H.K. Nigam and Md. Hadish contributed equally to this work.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigam, H.K., Hadish, M. Best approximation of functions in generalized Hölder class. J Inequal Appl 2018, 276 (2018). https://doi.org/10.1186/s13660-018-1864-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-018-1864-y

MSC

Keywords