Skip to main content
  • I — Coévolution Hôtes Pathogènes: Caractérisation et Gestion de la Diversité Génétique des deux Partenaires / Co-Evolution Hosts Pathogens: Characterization and Management of Genetic Diversity of Both Partners
  • Open access
  • Published:

Lack of correlation between (a)virulence and phylogenetic relationships in root-knot nematodes (Meloidogyne spp.)

Abscence de corrélation entre (a)virulence et relations phy-logénétiques chez les nématodes à galles (Meloidogyne spp.) démontrée par analyse RAPD et AFLP

Abstract

In tomato, the Mi resistance gene controls the major root-knot nematode species Meloidogyne arenaria, M. incognita and M. javanica. However, resistance-breaking (i.e. virulent) biotypes have been reported from most of the tomato-growing areas in the world. In this study, we assembled a collection of 17 isolates belonging to these three species, either avirulent or virulent against the Mi gene, in order to analyze their genetic diversity and phylogenetic relationships. According to parsimony analysis, genomic fingerprints based on RAPD or AFLP markers were independently used to compute trees describing the relationships between the isolates. In both dendrograms, isolates belonging either to the M. incognita or M. javanica species appeared clustered together, which tends to indicate a monophyletic origin for each of these two species. Conversely, M. arenaria isolates were not included in one single clade, which raised questions about the taxonomic status of the currently designated species M. arenaria. Moreover, our data showed that clustering of isolates was not associated with their (a)virulence against the tomato Mi resistance gene. This lack of correlation between groups determined by molecular markers and virulence indicates that most of the observed DNA polymorphism is independent of virulence, which is presumably under host selection.

Résumé

Chez la tomate, le gène Mi de résistance contrôle les principales espèces de nématodes à galles, à savoir Meloidogyne arenaria, M. incognita et M. javanica. Cependant, des biotypes virulents, c’est-à-dire capables de contourner la résistance, ont été mis en évidence dans la plupart des zones de culture de la tomate à l’échelle mondiale. Au cours de ce travail, nous avons mis en place une collection de 17 isolats appartenant à ces trois espèces, caractérisés pour leur avirulence ou leur virulence vis-à-vis du gène Mi. L’objectif de notre étude a été d’analyser la diversité génétique et les relations phylogénétiques de ces nématodes, en relation avec leur capacité à se multiplier ou non sur tomate résistante. Les profils moléculaires de chaque isolat, obtenus à partir de marqueurs de type RAPD ou AFLP, ont servi indépendamment de matrice pour construire les arbres phylogénétiques décrivant les relations entre les 17 isolats, par le biais d’une analyse par parsimonie. Une très bonne corrélation a été observée entre les deux types de marqueurs moléculaires. Dans les deux arbres, les isolats appartenant soit à l’espèce M. incognita, soit à l’espèce M. javanica sont apparus regroupés, ce qui indique très vraisemblablement l’origine monophylé-tique de ces deux taxons. En revanche, les isolats appartenant à l’espèce M. arenaria n’ont pas été distribués au sein d’un unique groupe, ce qui pose la question de leur statut spécifique. De plus, nos résultats ont montré que la distribution des divers isolats n’est pas corrélée avec leur (a)virulence vis-à-vis du gène de résistance Mi. Cette abscence de corrélation entre les groupes définis à l’aide de marqueurs moléculaires et selon la virulence des isolats indique que la quasi-totalité du polymorphisme de l’ADN observé est indépendant de la virulence, laquelle est sans doute soumise à la pression de sélection exercée par la plante-hôte.

References

  1. Backeljau T., de Bruyin L., de Wolf H., Jodaens K., van Dongen S., Verhagen R., Winnepenninckx B., Random amplified polymorphic DNA (RAPD) and parsimony methods, Cladistics 11 (1995) 119–130.

    Article  Google Scholar 

  2. Behura S.K., Nair S., Sahu S.C., Mohan M., An AFLP marker that differentiates biotypes of the Asian rice gall midge (Orselia oryzae, Wood-Mason) is sex-linked and also linked to avirulence, Mol. Gen. Genet. 263 (2000) 328–334.

    Article  CAS  Google Scholar 

  3. Black W.C., IV, PCR with arbitrary primers: approach with care, Insect Mol. Biol. 2 (1993) 1–6.

    Article  CAS  Google Scholar 

  4. Borowsky R.L., McClelland M., Cheng R., Welsh J., Arbitrarily primed DNA fingerprinting for phylogenetic reconstruction in vertebrates: The Xiphophorus model, Mol. Biol. Evol. 12 (1995) 1022–1032.

    CAS  PubMed  Google Scholar 

  5. Eddaoudi M., Ammati M., Rammah M., Identification of the resistance breaking populations of Meloidogyne on tomatoes in Morocco and their effect on new sources of resistance, Fundam. Appl. Nematol. 20 (1997) 285–289.

    Google Scholar 

  6. Felsenstein J., Confidence limits on phylogenies: An approach using the bootstrap, Evolution 39 (1985) 783–791.

    Article  Google Scholar 

  7. Folkertsma R.T., Rouppe van der Voort J.N.A.M., van Gent-Pelzer M.P.E., de Groot K.E., van den Bos W.J., Schots A., Bakker J., Gommers, F.J. Inter- and intraspecific variation between populations of Globodera rostochiensis and G. pallida revealed by random amplified polymorphic DNA, Phytopathology 84 (1994) 807–811.

    Article  CAS  Google Scholar 

  8. Folkertsma R.T., Rouppe van der Voort J.N.A.M., de Groot K.E., van Zandvoort P.M., Schots A., Gommers F.J., Helder J., Bakker J., Gene pool similarities of potato cyst nematode populations assessed by AFLP analysis, Mol. Plant-Microbe Interact. 9 (1996) 47–54.

    Article  CAS  Google Scholar 

  9. Huelsenbeck J.P., Bull J.J., Cunningham C.W., Combining data in phylogenetic analysis, Trends Ecol. Evol. 11 (1996) 152–158.

    Article  CAS  Google Scholar 

  10. Hugall A., Moritz C., Stanton J., Wolstenholme D.R., Low, but strongly structured mitochondrial DNA diversity in root-knot nematodes (Meloidogyne), Genetics 136 (1994) 903–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaloshian I., Williamson V.M., Miyao G., Lawn D.A., Westerdahl B.B., Resistance-breaking nematodes identified in California tomatoes, California Agr. 50 (1996) 18–19.

    Article  Google Scholar 

  12. Kluge A.G., A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes), Syst. Zool. 38 (1989) 7–25.

    Article  Google Scholar 

  13. Li W., Graur D., Fundamentals of molecular evolution. Sinauer Associates Inc., 1991.

    Google Scholar 

  14. Sambrook J., Fritsch E.F., Maniatis T., Molecular cloning: A laboratory manual. 2nd edn., Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  15. Semblat J.P., Bongiovanni M., Wajnberg E., Dalmasso A., Abad P., Castagnone-Sereno P., Virulence and molecular diversity of parthenogenetic root-knot nematodes, Meloidogyne spp., Heredity (2000) 81–89.

    Google Scholar 

  16. Semblat J.P., Wajnberg E., Dalmasso A., Abad, P., Castagnone-Sereno, P., High-resolution DNA fingerprinting of parthenogenetic root-knot nematodes using AFLP analysis, Mol. Ecol. 7 (1998) 119–125.

    Article  CAS  Google Scholar 

  17. Sharma S.K., Knox M.R., Ellis T.H.N., AFLP analysis of the diversity and phylogeny of Lens and its comparison with RAPD analysis, Theor. Appl. Genet. 93 (1996) 751–758.

    Article  CAS  Google Scholar 

  18. Swofford D.L., PAUP Phylogenetic Analysis Using Parsimony, Version 3.1. Smithsonian Institute, 1993.

    Google Scholar 

  19. Triantaphyllou A.C., Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes, in: Sasser J.N., Carter C.C. (Eds.), An advanced treatise on Meloidogyne. Vol. I. Biology and control, North Carolina State University Graphics, 1985, pp. 113–126.

    Google Scholar 

  20. Trudgill D.L., Origins of root-knot nematodes (Meloidogyne spp., Nematoda) in relation to their cultural control, Phytoparasitica 23 (1995) 191–194.

    Article  Google Scholar 

  21. Tzortzakakis E.A., Gowen S.R., Occurrence of a resistance breaking pathotype of Meloidogyne javanica on tomatoes in Crete, Greece, Fundam. Appl. Nematol. 19 (1996) 283–288.

    Google Scholar 

  22. Veremis J.C., Roberts P.A., Identification of resistance to Meloidogyne javanica in the Lycopersicon peruvianum complex, Theor. Appl. Genet. 93 (1996) 894–901.

    Article  CAS  Google Scholar 

  23. Veremis J.C., Roberts P.A., Relationships between Meloidogyne incognita resistance genes in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence, Theor. Appl. Genet. 93 (1996b) 950–959.

    Article  CAS  Google Scholar 

  24. Yaghoobi J., Kaloshian I., Wen Y., Williamson V.M., Mapping a new nematode resistance locus in Lycopersicon peruvianum, Theor. Appl. Genet. 91 (1995) 457–464.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Castagnone-Sereno.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article

Semblat, JP., Castagnone-Sereno, P. Lack of correlation between (a)virulence and phylogenetic relationships in root-knot nematodes (Meloidogyne spp.). Genet Sel Evol 33 (Suppl 1), S45 (2001). https://doi.org/10.1186/BF03500872

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/BF03500872

Keywords

Mots clés