Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-17T14:57:41.071Z Has data issue: false hasContentIssue false

Elemental, lead and sulfur isotopic compositions of galena from Kola carbonatites, Russia – implications for melt and mantle evolution

Published online by Cambridge University Press:  02 January 2018

K. Bell*
Affiliation:
Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
A. N. Zaitsev
Affiliation:
Department of Mineralogy, St.-Petersburg University, University Emb., 7/9, St.-Petersburg, 199034, Russia Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
J. Spratt
Affiliation:
Imaging and Analysis Centre, Natural History Museum, Cromwell Road, London SW7 5BD, UK
S. Fröjdö
Affiliation:
Åbo Akademi University, Department of Geology and Mineralogy, FIN-20500 Turku, Finland
A. S. Rukhlov
Affiliation:
Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada British Columbia Geological Survey, 1810 Blanshard St., Victoria, British Columbia, V8W9N3, Canada
*
*E-mail: kib@magma.ca

Abstract

Galena from four REE-rich (Khibina, Sallanlatvi, Seblyavr, Vuoriyarvi) and REE-poor (Kovdor) carbonatites, as well as hydrothermal veins (Khibina) all from the Devonian Kola Alkaline Province of northwestern Russia was analysed for trace elements and Pb and S isotope compositions. Microprobe analyses show that the only detectable elements in galena are Bi and Ag and these vary from not detectable to 2.23 and not detectable to 0.43 wt.% respectively. Three distinct galena groups can be recognized using Bi and Ag contents, which differ from groupings based on Pb isotope data. The Pb isotope ratios show significant spread with 206Pb/204Pb ratios (16.79 to 18.99), 207Pb/204Pb (15.22 to 15.58) and 208Pb/204Pb ratios (36.75 to 38.62). A near-linear array in a 207Pb/204Pb vs.206Pb/204Pb ratio diagram is consistent with mixing between distinct mantle sources, one of which formed during a major differentiation event in the late Archaean or earlier. The S isotopic composition (δ34S) of galena from carbonatites is significantly lighter (–6.7 to –10.3% Canyon Diablo Troilite (CDT) from REE-rich Khibina, Seblyavr and Vuoriyarvi carbonatites, and – 3.2% CDT from REE-poor Kovdor carbonatites) than the mantle value of 0%. Although there is no correlation between S and any of the Pb isotope ratios, Bi and Ag abundances correlate negatively with δ34S values. The variations in the isotopic composition of Pb are attributed to partial melting of an isotopically heterogeneous mantle source, while those of δ34S (together with Bi and Ag abundances) are considered to be process driven. Although variation in Pb isotope values between complexes might reflect different degrees of interaction between carbonatitic melts and continental crust or metasomatized lithosphere, the published noble gas and C, O, Sr, Nd and Hf isotopic data suggest that the variable Pb isotope ratios are best attributed to isotopic differences preserved within a sub-lithospheric mantle source. Different Pb isotopic compositions of galena from the same complex are consistent with a model of magma replenishment by carbonatitic melts/fluids each marked by quite different Pb isotopic compositions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allègre, C.C. and Turcotte, D.K. (1986) Implications of a two-component marble cake mantle. Nature, 323, 123127.CrossRefGoogle Scholar
Amelin, Yu. and Zaitsev, A.N. (2002) Precise geochronology of phoscorites and carbonatites: the critical role of U-series disequilibrium in age interpretations. Geochimica et Cosmochimica Acta, 66, 23992419.CrossRefGoogle Scholar
Arzamastsev, A.A. and Arzamastseva, L.V. (2013) Geochemical indicators of the evolution of the ultrabasic-alkaline series of Paleozoic massifs of the Fennoscandian Shield. Petrology, 21(3), 249279.CrossRefGoogle Scholar
Arzamastsev, A.A. and Belyatskii, B.V. (1999) Evolution of the mantle source of the Khibiny massif: evidence from Rb-Sr and Sm-Nd data on deep-seated xenoliths. Doklady Earth Sciences, 366, 562565.Google Scholar
Arzamastsev, A.A., Arzamastseva, L.V., Zhirova, A.M. and Glaznev, V.N. (2013) Model of formation of the Khibiny-Lovozero ore-bearing volcanic-plutonic complex. Geology of Ore Deposits, 55, 341356.CrossRefGoogle Scholar
Balaganskaya, E.G., Downes, H. and Demaiffe, D. (2007) REE and Sr-Nd isotope compositions of clinopyroxenites, phoscorites and carbonatites of the Seblyavr massif, Kola peninsula, Russia. Mineralogia Polonica, 38, 2945.CrossRefGoogle Scholar
Balashov, Yu.A., Mitrofanov, F.P. and Balagansky, V.V. (1992) New geochronological data on Archean rocks of the Kola peninsula. Pp. 1334. in: Correlation of Precambrian Formation of the Kola-Karelian Region and Finland (V.V. Balagansky and F.P. Mitrofanov, editors). Kola Science Center of RAS, Apatity, Russia [in Russian].Google Scholar
Bell, K. (2001) Glimpses into the crystallization history of carbonatitic melts-an isotopic approach. EUG XI Abstract Volume. Strasbourg, France p. 661.Google Scholar
Bell, K. and Blenkinsop, J. (1987) Archean depleted mantle: evidence from Nd and Sr initial ratios of carbonatites. Geochimica et Cosmochimica Acta, 15, 291298.CrossRefGoogle Scholar
Bell, K. and Rukhlov, A.S. (2004) Carbonatites from the Kola Alkaline Province: origin, evolution and source characteristics. Pp. 433468. in: Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province (F. Wall and A.N. Zaitsev, editors). Mineralogical Society Series, Vol. 10. Mineralogical Society, London.Google Scholar
Bell, K. and Simonetti, A. (1996) Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. Journal of Petrology, 37, 13211339.CrossRefGoogle Scholar
Bell, K., Blenkinsop, J., Cole, T.J.S. and Menagh, D.P. (1982) Evidence from Sr isotopes for long-lived heterogeneities in the upper mantle. Nature, 298, 251253.CrossRefGoogle Scholar
Bizzarro, M., Simonetti, A., Stevenson, R.K. and Kurszlaukis, S. (2003) In situ 87Sr/86Sr investigation of igneous apatites and carbonates using laserablation MC-ICP-MS. Geo chimicaet Cosmochimica Acta, 73, 289302.CrossRefGoogle Scholar
Boman, A., Fröjdö, S., Backlund, K. and Åström, M. (2010) Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfide. Geochimica et Cosmochimica Acta, 74, 12681281.CrossRefGoogle Scholar
Bulakh, A.G. and Ivanikov, V.V. (1984) Problems of Mineralogy and Petrology of Carbonatites. Leningrad State University, Leningrad, 242 pp., [in Russian]. Bulakh, A.G., Le Bas, M.J., Wall, F. and Zaitsev, A.N. (1998) Ancylite-bearing carbonatites of the Seblyavr massif, Kola peninsula, Russia. Neues Jahrbuch für Mineralogie, Monatshefte, 1998, 171192.Google Scholar
Bulakh, A.G., Nesterov, A.R., Zaitsev, A.N., Pilipuk, A.N., Wall, F. and Kirillov, A.S. (2000) Sulfurcontaining monazite-(Ce) from late-stage mineral assemblages at the Kandaguba and Vuorijarvi carbonatite complexes, Kola Peninsula, Russia. Neues Jahrbuch für Mineralogie, Monatshefte, 2000, 217233.Google Scholar
Campbell, I.H. and O’Neill, H.St.C. (2012) Evidence against a chondritic Earth. Nature, 483, 553558.CrossRefGoogle ScholarPubMed
Caro, G. (2011) Early silicate Earth differentiation. Annual Reviews Earth and Planetary Sciences, 39, 3158.CrossRefGoogle Scholar
Chang, L.L.Y., Wu, D. and Knowles, C.R. (1988) Phase relations in the system Ag2S-Cu2S-PbS-Bi2S3. Economic Geology, 83, 405418.CrossRefGoogle Scholar
Craig, J.R. (1967) Phase relations and mineral assemblages in the Ag-Bi-S system. Mineralium Deposita, 1, 278306.CrossRefGoogle Scholar
Dauphas, N. and Marty, B. (1999) Heavy nitrogen in carbonatites of the Kola Peninsula: a possible signature of the deep mantle. Science, 286, 24882490.CrossRefGoogle ScholarPubMed
Deines, P. (1989) Stable isotope variations in carbonatites. Pp. 301359. in: Carbonatites: Genesis and Evolution (K. Bell, editor). Unwin Hyman, London.Google Scholar
Demény, A., Sitnikova, M.A. and Karchevsly, P.I. (2004) Stable C and O isotope compositions of carbonatite complexes of the Kola Alkaline Province: phoscorite-carbonatite relationships and source compositions. Pp. 407431. in: Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province (F. Wall and A.N. Zaitsev, editors). Mineralogical Society Series, Vol. 10. Mineralogical Society, London.Google Scholar
Downes, H., Balaganskaya, E., Beard, A., Liferovich, R. and Demaiffe, D. (2005) Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: a review. Lithos, 85, 4875.CrossRefGoogle Scholar
Dunworth, E.A. and Bell, K. (2001) The Turiy massif, Kola Peninsula, Russia: isotopic and geochemical evidence for multi-source evolution. Journal of Petrology, 42, 377405.CrossRefGoogle Scholar
Farrell, S., Bell, K. and Clark, I. (2010) Sulphur isotopes in carbonatites and associated silicate rocks from the Superior Province, Canada. Mineralogy and Petrology, 98, 209226.CrossRefGoogle Scholar
Foord, E.E. and Shawe, D.R. (1989) The Pb-Bi-Ag-Cu-(Hg) chemistry of galena and some associated sulfosalts: a review and some new data from Colorado, California and Pennsylvania. The Canadian Mineralogist, 27, 363382.Google Scholar
Foord, E.E., Shawe, D.R. and Conklin, N.M. (1988) Coexisting galena, PbS22 and sulfosalts: evidence for multiple episodes of mineralization in the Round Mountain and Manhattan gold districts, Nevada. The Canadian Mineralogist, 26, 355376.Google Scholar
Gogol, O.V. and Delenitsin, A.A. (1999) New Rb-Sr data for Kola alkaline province. Pp. 4347. in: Proceedings of the 10th Kratz Conference, Apatity, Russia [in Russian].Google Scholar
Gogol, O.V., Bayanova, T.B., Balaganskaya, E.G. and Delenitsin, A.A. (1998) New evidence on the duration of alkaline magmatism of the Kola region (Russia) based on Rb-Sr and U-Pb isotope data. Chinese Science Bulletin, 43, 45.CrossRefGoogle Scholar
Grinenko, L.N., Kononova, V.A. and Grinenko, V.A. (1970) Isotopic composition of sulfide sulfur in carbonatites. Geochemistry International, 6, 4553.Google Scholar
Hoda, S.N. and Chang, L.L.Y. (1975) Phase relations in the system PbS-Ag2S-Sb2S3 and PbS-Ag2S-Bi2S3. American Mineralogist, 60, 621633.Google Scholar
Hoefs, J. (2009) Stable Isotope Geochemistry, Sixth Edition. Springer, Berlin-Heidelberg, 285 pp. Hoffmann, J.E., Münker, C., Polat, A., König, S., Mezger, K. and Rosing, M.T. (2010) Highly depleted Hadean mantle reservoirs in the sources of early Archean arc-like rocks, Isua supracrustal belt, southern West Greenland. Geochimica et Cosmochimica Acta, 74, 72367260.Google Scholar
Kapustin, Yu.L. (1980) Mineralogy of Carbonatites. Amerind Publishing, New Delhi, 259 pp. Karup-Møller, S. (1977) Mineralogy of some Ag-(Cu)-Pb-Bi sulphide associations. Bulletin of the Geological Society of Denmark, 26, 4168.Google Scholar
Khomyakov, A.P. (1995) Mineralogy of Hyperagpaitic Alkaline Rocks. Clarendon Press, Oxford, 223 pp. Kogarko, L.N., Kononova, V.X., Orlova, M.P. and Woolley, A.R. (1995) Alkaline Rocks and Carbonatites of the World; Part 2, Former USSR. Chapman Hall, London, 226 pp. Kogarko, L.N., Lahaye, Y. and Brey, G.P. (2010) Plume-related mantle source of super-large rare metal deposits from the Lovezero and Khibina massifs on the Kola Peninsula, eastern part of the Baltic Shield: Sr, Nd and Hf isotope systematics. Mineralogy and Petrology, 98, 197208.Google Scholar
Krasnova, N.I., Balaganskaya, E.G. and Garcia, D. (2004) Kovdor-classic phoscorites and carbonatites. Pp. 99132. in: Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province (F. Wall and A.N. Zaitsev, editors), Mineralogical Society Series, Vol. 10. Mineralogical Society, London.Google Scholar
Kramm, U. (1993) Mantle component of carbonatites from the Kola Alkaline province, Russia and Finland: a Nd-Sr study. European Journal of Mineralogy, 5, 985989.CrossRefGoogle Scholar
Kramm, U. and Kogarko, L.N. (1994) Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline Province, Russia. Lithos, 32, 225242.CrossRefGoogle Scholar
Kramm, U. and Sindern, S. (2004) Timing of Kola ultrabasic, alkaline and phoscorites-carbonatite magmatism. Pp. 7597. in: Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province (F. Wall and A.N. Zaitsev, editors). Mineralogical Society Series, Vol. 10. Mineralogical Society, London.Google Scholar
Kramm, U., Kogarko, L.N., Kononova, V.A. and Vartiainen, H. (1993) The Kola alkaline province of the CIS and Finland: Precise Rb-Sr ages define Ma ages for all magmatism. Lithos, 30, 3344.CrossRefGoogle Scholar
Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskaya-Korsakova, O.M., Nefedov, E.I., Ilinsky, G.A., Sergeev, A.S. and Abakumova, N.B. (1965) The Caledonian Complexes of Ultrabasic-Alkaline and Carbonatite Rocks on Kola Peninsula and in Northern Karelia (Geology,Petrology, Mineralogy and Geochemistry). Nedra, Moscow, 772 pp., [in Russian].Google Scholar
Kukharenko, A.A., Bulakh, A.G., Ilinsky, G.A., Shinkarev, N.F. and Orlova, M.P. (1971) Metallogenetic Features of Alkaline Complexes from Eastern Part of the Baltic Shield. Transactions of the Leningrad Society of Naturalists. Nedra, Leningrad, 280 pp. [in Russian].Google Scholar
Kuleshov, V.N. (1986) Isotopic Composition and Origin of Deep-seated Carbonates. Nauka, Moscow, 122 pp., [in Russian].Google Scholar
Kwon, S.T., Tilton, G.R. and Grünenfelder, M.H. (1989) Pb isotope relationships in carbonatites and alkalic complexes: an overview. Pp. 360387. in: Carbonatites: Genesis and Evolution (K. Bell, editor). Unwin Hyman, London.Google Scholar
Lancelot, J.R. and Allègre, C. (1974) Origin of carbonatitic magmas in the light of the Pb-U-Pb isotope system. Earth and Planetary Science Letters, 22, 233238.CrossRefGoogle Scholar
Lapin, A.V. and Vartiainen, H. (1983) Orbicular and spherulitic carbonatites from Sokli and Vuoriyarvi. Lithos, 16, 5360.CrossRefGoogle Scholar
Lee, M.J., Lee, J.I., Hur, S.D., Kim, J., Moutte, J. and Balaganskaya, E. (2006) Sr-Nd-Pb isotopic compositions of the Kovdor phoscorite-carbonatite complex, Kola Peninsula, NW Russia. Lithos, 91, 250261.CrossRefGoogle Scholar
Ludwig, K.R. (1993) User’s manual for Isoplot/Ex version 3.00, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, No. 4. Berkely, California, USA. Mäkelä, M. and Vartiainen, H. (1978) A study of sulfur isotopes in the Sokli multi-stage carbonatite (Finland). Chemical Geology, 21, 257265.Google Scholar
Marty, B., Tolstikhin, I., Kamensky, I.L., Nivin, V., Balaganskaya, E. and Zimmerman, J-L. (1998) Plume-derived rare gases in 380 Ma carbonatites from the Kola region (Russia) and the argon isotopic composition of the deep mantle. Earth and Planetary Science Letters, 164, 179192.CrossRefGoogle Scholar
Mirnejad, H. and Bell, K. (2006) Origin and source evolution of the Leucite Hills lamproites: evidence from Sr-Nd-O-Pb isotopic compositions. Journal of Petrology, 47, 24632489.CrossRefGoogle Scholar
Mitchell, R.H. (1973) Isotopic composition of lead in galena from the Mountain Pass carbonatite, California. Nature Physical Sciences, 241, 1718.CrossRefGoogle Scholar
Mitchell, R.H. (2005) Carbonatites and carbonatites and carbonatites. The Canadian Mineralogist, 43, 20492068.CrossRefGoogle Scholar
Mitchell, R.H. and Krouse, H.R. (1975) Sulphur isotope geochemistry of carbonatites. Geochimica et Cosmochimica Acta, 39, 15051513.CrossRefGoogle Scholar
Mitchell, R.H., Wu, F.-Y. and Yang, Y.-H. (2011) In situ U-Pb, Sr and Nd isotopic analysis of loparite by LA-(MC)-ICP-MS. Chemical Geology, 280, 191199.CrossRefGoogle Scholar
Mitrofanov, F.P., Zozulya, D.R., Bayanova, T.B. and Levkovich, N.V. (2000) The world’s oldest anorogenic alkali granitic magmatism in the Keivy structure on the Baltic Shield. Doklady Earth Sciences, 374, 11451148.Google Scholar
Nelson, D.R., Chivas, A.R., Chappell, B.W. and McCulloch, M.T. (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52, 117.CrossRefGoogle Scholar
Petrov, S.V. (2004) Economic deposits associated with the alkaline and ultrabasic complexes of the Kola Peninsula. Pp. 469490. in: Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province (F. Wall and A.N. Zaitsev, editors). Mineralogical Society Series, Vol. 10. Mineralogical Society, London.CrossRefGoogle Scholar
Reguir, E.P., Camacho, A., Yang, P., Chakhmouradian, A.R., Kamenetsky, V.S. and Halden, N.M. (2010) Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS. Mineralogy and Petrology, 100, 95103.CrossRefGoogle Scholar
Ripley, E.M. (1999) Systematics of S and O isotopes in mafic igneous rocks and related Cu-Ni-PGE mineralization. Pp. 133158. in: Dynamic Processes in Magmatic Ore Deposits and their Application to Mineral Exploration (R.R. Keays, C.M. Lesher, P.C. Lightfoot and C.E.G. Farrow, editors). Geological Association of Canada Short Course, 13. Geological Association of Canada, St John’s, Newfoundland, Canada.Google Scholar
Rollinson, H. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Addison Wesley Longman, Essex, UK, 352 pp.Google Scholar
Rukhlov, A.S. and Bell, K. (2003) Depleted mantle: the story from Hf isotopes in zircons and baddeleyites from carbonatites. EGS-AGU-EUG Joint Assembly, Nice, France, April 2003. Geophysical Research Abstracts, 5, 13944. Rukhlov, A.S. and Bell, K. (2010) Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution. Mineralogy and Petrology, 98, 1154.CrossRefGoogle Scholar
Rukhlov, A.S., Bell, K. and Ivanikov, V.V. (2001) Archæan mantle below the Baltic shield: isotopic evidence from intrusive carbonatites. Journal of African Earth Sciences, 32, A30-A31. Sharp, Y.G. and Buseck, P.R. (1993) The distribution of Ag and Sb in galena: inclusions versus solid solution. American Mineralogist, 78, 8595.Google Scholar
Simonetti, A. and Bell, K. (1994) Isotopic and geochemical investigation of the Chilwa Island carbonatite complex, Malawi: evidence for a depleted mantle source region, liquid immiscibility, and open-system behaviour. Journal of Petrology, 35, 15971621.CrossRefGoogle Scholar
Simonetti, A. and Bell, K. (1995) Nd, Pb, and Sr isotope systematics of fluorite at the Amba Dongar carbonatite complex, India: evidence for hydrothermal and crustal fluid mixing. Economic Geology, 90, 20182027.CrossRefGoogle Scholar
Sorokhtina, N.V., Voloshin, A.V. and Pakhomovsky, Ya.A. (2001) Ca-Sr-Ba carbonates from carbonatites of Kola Peninsula. Zapiski (Proceedings) of the Russian Mineralogical Society, 130(5), 9198. [in Russian].Google Scholar
Stacey, J.S. and Kramers, J.D. (1975) Approximation of terrestrial lead evolution by a two-stage model. Earth and Planetary Science Letters, 26, 207221.CrossRefGoogle Scholar
Subbotin, V.V., Voloshin, A.V., Pakhomovsky, Ya.A. and Bakhchisaraitsev, A.Yu. (1999) Calcioburbankite and burbankite from carbonatites of Vuoriyarvi massif (new data). Zapiski (Proceedings) of the Russian Mineralogical Society, 128(1), 7887. [in Russian].Google Scholar
Tichomirowa, M., Whitehouse, M.J., Gerdes, A., Götze, J., Schulz, B. and Belyatsky, B.V. (2013) Different zircon recrystallization types in carbonatites caused by magma mixing: Evidence from U-Pb dating, trace element and isotope composition (Hf and O) of zircons from two Precambrian carbonatites from Fennoscandia. Chemical Geology, 353, 173198.CrossRefGoogle Scholar
Tilton, G.R. (1983) Evolution of depleted mantle: the lead perspective. Geochimica et Cosmochimica Acta, 47, 11911197.CrossRefGoogle Scholar
Tilton, G.R. and Bell, K. (1994) Sr-Nd-Pb isotope relationships in Late Archean carbonatites and alkaline complexes: application to the geochemical evolution of Archean mantle. Geochimica et Cosmochimica Acta, 58, 31453154.CrossRefGoogle Scholar
Tilton, G.R. and Kwon, S-T. (1990) Isotopic evidence for crust-mantle evolution with emphasis on the Canadian Shield. Chemical Geology, 83, 149183.CrossRefGoogle Scholar
Timmerman, M.J. and Daly, J.S. (1995) Sm-Nd evidence for late Archean crust formation in the Lapland-Kola Mobile Belt, Kola peninsula, Russia and Norway. Precambrian Research, 72, 97107.CrossRefGoogle Scholar
Todt, W., Cliff, R.A., Hanser, A. and Hofmann, A.W. (1996) Evaluation of 202Pb-205Pb double spike for high precision lead isotopic analysis. Pp. 429437. in: Earth Processes: Reading the Isotopic Code (A.R. Basu and S.R. Hart, editors). Geophysical Monograph, 95. American Geophysical Union, Washington, DC.Google Scholar
Tolstikhin, I.N., Kamensky, I.L., Marty, B., Nivin, V.A., Vetrin, V.R., Balaganskaya, E.G., Ikorsky, S.V., Gannibal, M.A., Weiss, D., Verhulst, A. and Demaiffe, D. (2002) Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: identification of lower mantle plume component: Geochimica et Cosmochimica Acta, 66, 881901.Google Scholar
Van Hook, H.J. (1960) The ternary system Ag2S-Bi2S3-PbS. Economic Geology, 55, 759788.CrossRefGoogle Scholar
Verhulst, A., Balaganskaya, E., Kirnarsky, Yu. and Demaiffe, D. (2000) Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Palaeozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia). Lithos, 51, 125.CrossRefGoogle Scholar
Wall, F. and Zaitsev, A.N. (editors) (2004a) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Mineralogical Soci ety Ser ies, Vol . 10. Mineralogical Society, London, 498 pp.CrossRefGoogle Scholar
Wall, F. and Zaitsev, A.N. (2004b) Rare earth minerals in Kola carbonatites. Pp. 341373. in: Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province (F. Wall and A.N. Zaitsev, editors). Mineralogical Society Series, Vol. 10. Mineralogical Society, London.CrossRefGoogle Scholar
Wu, F.-Y., Arzamastsev, A.A., Mitchell, R.H., Li, Q.-L., Sun, J., Yang, Y.-H. and Wang, R.-C. (2013) Emplacement age and Sr-Nd isotopic compositions of the Afrikanda alkaline ultramafic complex, Kola Peninsula, Russia. Chemical Geology, 353, 210229.CrossRefGoogle Scholar
Yakovenchuk, V., Ivanyuk, G., Pakhomovsky, Ya. and Men’shikov, Yu. (2005) Khibiny. Laplandia Minerals, Apatity, Russia, 468 pp. York, D. (1969) Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters, 5, 320324.Google Scholar
Zaitsev, A.N. (1996) Rhombohedral carbonates from carbonatites of the Khibina massif, Kola peninsula, Russia. The Canadian Mineralogist, 34, 453468.Google Scholar
Zaitsev, A. and Bell, K. (1995) Sr and Nd isotope data of apatite, calcite and dolomite as indicators of the source and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola peninsula, Russia. Contributions to Mineralogy and Petrology, 121, 324335.CrossRefGoogle Scholar
Zaitsev, A.N., Bell, K., Wall, F. and Le Bas, M.J. (1997) Alkaline rare-earth element carbonates from carbonatites of the Khibiny massif: mineralogy and genesis. Doklady Akademii Nauk, 355(2), 241245.Google Scholar
Zaitsev, A.N., Wall, F. and Le Bas, M.J. (1998) REE-Sr-Ba minerals from the Khibina carbonatites, Kola peninsula, Russia: their mineralogy, paragenesis and evolution. Mineralogical Magazine, 62, 225250.CrossRefGoogle Scholar
Zaitsev, A.N., Demény, A., Sindern, S. and Wall, F. (2002) Burbankite group minerals and their alteration in rare earth carbonatites-source of elements and fluids (evidence from C-O and Sr-Nd isotopic data). Lithos, 62, 1533.CrossRefGoogle Scholar
Zaitsev, A.N., Sitnikova, M.A., Subbotin, V.V., Fernández-Sáurez, J. and Jeffries, T.E. (2004) Sallanlatvi Complex-a rare example of magnesite and siderite carbonatites. Pp. 201245. in: Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province (F. Wall and A.N. Zaitsev, editors). Mineralogical Soci ety Ser ies, Vol . 10. Mineralogical Society, London.CrossRefGoogle Scholar
Zaitsev, A.N., Williams, C.T., Wall, F. and Zolotarev, A.A. (2012) Evolution of chemical composition of pyrochlore group minerals from phoscorites and carbonatites of the Khibina alkaline massif. Geology of Ore Deposits, 54, 503515.CrossRefGoogle Scholar
Zaitsev, A.N., Williams, C.T., Jeffries, T.E., Strekopytov, S., Moutte, J., Ivashchenkova, O.V., Spratt, J., Petrov, S.V., Wall, F., Seltmann, R. and Borozdin, A.P. (2014) Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geology Reviews, 61, 204225.CrossRefGoogle Scholar
Zagnitko, V.N. and Lugovaya, I.P. (1989) Isotope Geochemistry of Carbonate and Iron-Silica Rocks from Ukrainian Shield. Naukova Dumka, Kiev, Russia, 316 pp., [in Russian]. Zartman, R.E. and Kogarko, L.N. (2014) A Pb Isotope Investigation of the Lovozero Agpaitic Nepheline Syenite, Kola Peninsula, Russia. Doklady Earth Sciences, 454, 2528.Google Scholar
Zheng, Y. (1990) Sulfur isotope fractionation in magmatic systems: models of Rayleigh distillation and selective flux. Chinese Journal of Geochemistry, 9, 2745.Google Scholar
Zindler, A. and Hart, S. (1986) Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493571.CrossRefGoogle Scholar
Zozulya, D.R., Bayanova, T.B. and Eby, G.N. (2005) Geology and age of the Late Archean Keivy Alkaline Province, Northeastern Baltic Shield. Journal of Geology, 113, 601608.CrossRefGoogle Scholar