Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-10T15:29:27.562Z Has data issue: false hasContentIssue false

Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature

Published online by Cambridge University Press:  05 July 2018

Paul B. Moore
Affiliation:
Department of the Geophysical Sciences, The University of Chicago, Chicago Illinois 60637, USA
Jun Ito
Affiliation:
Department of the Geophysical Sciences, The University of Chicago, Chicago Illinois 60637, USA Died 6 June 1978

Synopsis

A nomenclature is proposed for the alluaudite and wyllieite complex series which is based on sequentially distributing the cations in the cell according to increasing polyhedral size, matching that size with increasing ionic radii of the cations. For oxidized members, the largest site may be partly occupied to empty after all the cations have been distributed. This is supported by structural study.

For alluaudites, the cell formula is X(2)4X(I)4 M(I)4M(2)8(PO4)12 and is written according to decreasing size of the discrete sites. The X(I) and X(2) sites are appended as suffixes in the trivial nomenclature, that is specific name—X(I)X(2).

For wyllieites, the cell formula is X(2)4X (1a)2X(1b)2M(I)4M(2a)4A14(PO4)12. The X(1a), X(1b), and X(2) sites are appended as suffixes in the trivial nomenclature, that is specific name--X(la) X(Ib)X(2).

The nomenclature proposed is:

Seventeen analyses are discussed (of which five are new) for alluaudite and four analyses (of which three are new) for wyllieites. Their distribution is given parenthetically above. One analysis revealed predominant Mg2+ in M(2). It is named maghagen-dortite.

Six new analyses are presented for the arrojadite family of minerals including re-examination of dickinsonite from Branchville, Connecticut. Al3+ is always present. We propose X1 Al (OH,F)(PO4)12, Z = 4, where X = large cations (K+, Ba2+, Pb2+, etc.), Y = Na1+, Ca2+, and M = Fe2+ Mn2+, Mg2+. A range of cations X, Y, M, and Al between 76.8 and 85.9 in the cell (84 for proposed formula) suggests the likelihood of some vacancies in the structure.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, (A.), 1976. Acta Crystallogr. B32, 2761.CrossRefGoogle Scholar
Berman, (H.), and Gonyer, (F. A.), 1930. Amer. Min. 15, 575.Google Scholar
Brush, (G. J.), and Dana, (E. S.), 1890. Amer. J. Sci. 89, 201.CrossRefGoogle Scholar
Damour, (A. A.), 1848. Ann. Mines, 13 341.Google Scholar
Eriksson, (T.), 1946. Ark. Kemi mineral. Geol. A23 (no. 8), 14 pp.Google Scholar
Eventoffo, (W.) , Martin, (R.), and Peacor, (D. R.), 1972, Amer. min., 57 45.Google Scholar
Fisher, (D. J.), 1955. Amer. Min. 40, 1100.Google Scholar
Fisher, (D. J.) 1957. Ibid. 42 661.Google Scholar
Fisher, (D. J.) 1965. Ibid. 50. 1647.Google Scholar
Guimarães, (D.), 1942. BOZ. Fac. Fil. Ciên Let. Univ. San Paolo 30 (Mineralogia 5, 1)Google Scholar
Huvelin, (P.) Orliac, (H.), and Permingeat, (Fr.), 1972. Notes Serv. gêol. Maroc 32, 35.Google Scholar
Von Knopring, (O.), 1969. Bull, Serv. Geol. Rwanda, 5 42.Google Scholar
Lindberg, (M. L.), 1950. Amer. Min. 35, 59.Google Scholar
Mason, (B. H.), 1940. Geol. Fören. Stockholm Förhandl. 62, 369.CrossRefGoogle Scholar
Mason, (B. H.), 1942. Ibid. 64, 335.Google Scholar
Moore, (P.B.), 1965. Amer. Min. 50, 713.Google Scholar
Moore, (P.B.), 1971. Ibid, 56, 1955.Google Scholar
Moore, (P.B.), 1973. Min. ReC. 4, 103.Google Scholar
Moore, (P.B.) and Araki, (T.), 1977. Amer. Min. 62, 229,Google Scholar
Moore, (P.B.) and Ito, (J.), 1973. Min. Rec. 4, 131.Google Scholar
Moore, (P.B.) and Molin-Cass, (J.-A.), 1974. Amer. Min.59, 280.Google Scholar
Palache, (C.), Berman, (H.), and Frondel, (C.), 1951, The System of Mineralogy of Dana, Vol. II.Seventh Ed. John Wiley and Sons (New York), p. 664.Google Scholar
Pehrman, (G.), 1939, Acta Acad. Aboensis, Math. Phys, 12 (No. 6), 24 pp.Google Scholar
Quensel, (P.), 1937. Geol. Fören. Stockholm Förhandl. 58, 621.Google Scholar
Quensel, (P.), 1940. Ibid., 62 297.Google Scholar
Strunz, (H.), 1959. N. Jahrb. Min. Monatsh. 1954, 252.Google Scholar
Thoreau, (J.s.) and Bastien, (G.), 1954. Acad. roy. Soc. colon. BUll. Séances 25(5), 1595Google Scholar