Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-30T02:29:35.892Z Has data issue: false hasContentIssue false

The ageing of sesquioxide gels. I. Iron oxide gels

Published online by Cambridge University Press:  14 March 2018

Robert C. Mackenzie
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen, Scotland
Robert Meldau
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen, Scotland

Summary

The gels prepared by adding ammonium hydroxide rapidly to ferric chloride solutions to various pH values are shown to consist of amorphous material and crystalline goethite ; no other iron oxide was definitely identified in the present experiments, although this does not preclude other oxides being present in gels prepared under slightly different conditions. The goethite grows as acieular crystals on ageing at all pH values, but the rate of growth is greater at higher pit values. The exothermic peaks appearing on differential thermograms of such gels are apparently due to coalescence of extremely minute hematite particles to give larger particles, the sharpness of the peak indicating to some extent the size of the original hematite particles. These observations are related to data for other iron oxides, and the morphology of ferric oxide polymorphs under the electron microscope is considered.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon., 1956. Pigment Particles. Their Character and Behaviour in Paint. Paint research Station, Teddington, Middlesex.Google Scholar
Ardenne, (M. von), 1940. Naturwiss., vol. 28, p. 113.Google Scholar
BagnO, (O.), Longuet-Escard, (J.), and Mathieu-Sicaud (A.), , 1951. Compt. Rend. Acad. Sci. Paris, vol. 232, p. 1350.Google Scholar
Fricke, (R.), and Hüttig, (G. F.), 1937. Hydroxyde and Oxydhydrate, in Handbuch der allgemeinen Chemie, Band IX. Akademische Verlagsgesellsehaft, Leipzig.Google Scholar
Fricke, (R.), and Hüttig, (G. F.) and Weitbrecht, (G.), 1943. Zeits. anorg. Chem., vol. 251, p. 424.Google Scholar
Gheith, (M. A.), 1952. Amer. Journ. Sci., vol. 250, p. 677.Google Scholar
Glemser, (O.), 1937. Ber. deut. chem. Ges., vol. 70, p. 2117.Google Scholar
Kurnakov, (N. S.) and Rode, (E. J.), 1928. Zeits. anorg. Chem., vol. 169, p. 57.Google Scholar
Mackenzie, (R. C.), 1949. Nature, vol. 164, p. 244.CrossRefGoogle Scholar
Mackenzie, (R. C.) 1952a. Problems of Clay and Laterite Genesis, (Milligan, W. O., editor). A.I.M.E., New York, p. 65.Google Scholar
Mackenzie, (R. C.) 1952b. An. Edafol. Fisiol. reg., vol. 11, p. 159.Google Scholar
Mackenzie, (R. C.) 1957. The Differential Thermal Investigation of Clays (Mackenzie, R. C., editor). Mineralogical Society, London, p. 299.Google Scholar
Mackenzie, (R. C.) 1958. Proc. Inst. Civil Engrs., vol. ll, p. 345.Google Scholar
Meldau, (R.), 1956. Handbuch der Staubtechnik. V.D.I. Verlag, Düsseldorf, vol. l, p. 55 and fig. 44.Google Scholar
Meldau, (R.) 1957. Arch. Eisenhtittenw., vol. 28, p. 615.Google Scholar
Meldau, (R.) and Robertson, (R. H. S.), 1953. Nature, vol. 172, p. 998.Google Scholar
Méring (J.), and Oberlin, (A.), 1957. Bull. Soe. fran ç. Min. Crist., vol. 80, p. 158.Google Scholar
Milligan, (W. O.), 1952. Problems of Clay and Laterite Genesis, (Milligan, W. O., editor). A.I.M.E., New York, p. 232.Google Scholar
Robertson, (R. H. S.), 1958. Proc. Inst. Civil Engrs., vol. 9, p. 389.Google Scholar
Watson, (J. H. L.) and Freeman, (M. W.), 1956. Kolloidzeits., vol. 148, p. 127.Google Scholar
Robertson, (R. H. S.), 1935. Inorganic Colloid Chemistry., Wiley and Sons, New York, vol. 2.Google Scholar
Robertson, (R. H. S.) and Milligan, (W. O.), 1940. Journ. physical Chem., vol. 44, p. 1081.Google Scholar