Skip to main content

Advertisement

Log in

Adverse Placental Perfusion and Pregnancy Outcomes in a New Nonhuman Primate Model of Gestational Protein Restriction

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Maternal malnutrition during pregnancy impacts fetal growth, with developmental consequences that extend to later life outcomes. In underdeveloped countries, this malnutrition typically takes the form of poor dietary protein content and quality, even if adequate calories are consumed. Here, we report the establishment of a nonhuman primate model of gestational protein restriction (PR) in order to understand how placental function and pregnancy outcomes are affected by protein deficiency. Rhesus macaques were assigned to either a control diet containing 26% protein or switched to a 13% PR diet prior to conception and maintained on this PR diet throughout pregnancy. Standard fetal biometry, Doppler ultrasound of uter-oplacental blood flow, ultrasound-guided amniocentesis, and contrast-enhanced ultrasound (CE-US) to assess placental perfusion were performed mid-gestation (gestational day 85 [G85] where term is G168) and in the early third trimester (G135). Our data demonstrate that a 50% reduction in dietary protein throughout gestation results in reduced placental perfusion, fetal growth restriction, and a 50% rate of pregnancy loss. In addition, we demonstrate reduced total protein content and evidence of fetal hypoxia in the amniotic fluid. This report highlights the use of CE-US for in vivo assessment of placental vascular function. The ability to detect placental dysfunction, and thus a compromised pregnancy, early in gestation, may facilitate the development of interventional strategies to optimize clinical care and improve long-term offspring outcomes, which are future areas of study in this new model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frias AE, Morgan TK, Evans AE, et al. Maternal high-fat diet disturbs uteroplacental hemodynamics and increases the frequency of stillbirth in a nonhuman primate model of excess nutrition. Endocrinology. 2011;152(6):2456–2464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McCurdy CE, Bishop JM, Williams SM, et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest. 2009;119(2):323–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sullivan EL, Grayson B, Takahashi D, et al. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci. 2010;30(10):3826–3830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lumey LH, Stein AD. Offspring birth weights after maternal intrauterine undernutrition: a comparison within sibships. Am J Epidemiol. 1997;146(10):810–819.

    Article  CAS  PubMed  Google Scholar 

  5. Elias AA, Ghaly A, Matushewski B, Regnault TR, Richardson BS. Maternal nutrient restriction in guinea pigs as an animal model for inducing fetal growth restriction. Reprod Sci. 2016;23(2):219–227.

    Article  CAS  PubMed  Google Scholar 

  6. Gonzalez PN, Gasperowicz M, Barbeito-Andres J, Klenin N, Cross JC, Hallgrimsson B. Chronic protein restriction in mice impacts placental function and maternal body weight before fetal growth. PLoS One. 2016;11(3):e0152227.

    Google Scholar 

  7. Morgane PJ, Austin-LaFrance R, Bronzino J, et al. Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev. 1993;17(1):91–128.

    Article  CAS  PubMed  Google Scholar 

  8. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341(8850):938–941.

    Article  CAS  PubMed  Google Scholar 

  9. Singhal A, Lucas A. Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet. 2004;363(9421):1642–1645.

    Article  PubMed  Google Scholar 

  10. Painter RC, de Rooij SR, Bossuyt PM, et al. Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr. 2006;84(2):322–327; quiz 466–327.

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez-Twinn DS, Ozanne SE, Ekizoglou S, et al. The maternal endocrine environment in the low-protein model of intra-uterine growth restriction. Br J Nutr. 2003;90(4):815–822.

    Article  CAS  PubMed  Google Scholar 

  12. Rutland CS, Latunde-Dada AO, Thorpe A, Plant R, Langley-Evans S, Leach L. Effect of gestational nutrition on vascular integrity in the murine placenta. Placenta. 2007;28(7):734–742.

    Article  CAS  PubMed  Google Scholar 

  13. Coan PM, Vaughan OR, Sekita Y, et al. Adaptations in placental phenotype support fetal growth during undernutrition of pregnant mice. J Physiol. 2010;588(pt 3):527–538.

    Article  CAS  PubMed  Google Scholar 

  14. Vaughan OR, Sferruzzi-Perri AN, Coan PM, Fowden AL. Environmental regulation of placental phenotype: implications for fetal growth. Reprod Fertil Dev. 2011;24(1):80–96.

    Article  CAS  PubMed  Google Scholar 

  15. Roberts VH, Rasanen JP, Novy MJ, et al. Restriction of placental vasculature in a non-human primate: a unique model to study placental plasticity. Placenta. 2012;33(1):73–76.

    Article  CAS  PubMed  Google Scholar 

  16. Guttmacher AE, Maddox YT, Spong CY. The Human Placenta Project: placental structure, development, and function in real time. Placenta. 2014;35(5):303–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Acharya G, Erkinaro T, Makikallio K, Lappalainen T, Rasanen J. Relationships among Doppler-derived umbilical artery absolute velocities, cardiac function, and placental volume blood flow and resistance in fetal sheep. Am J Physiol Heart Circ Physiol. 2004;286(4):H1266–H1272.

    Article  CAS  PubMed  Google Scholar 

  18. Thompson RS, Trudinger BJ. Doppler waveform pulsatility index and resistance, pressure and flow in the umbilical placental circulation: an investigation using a mathematical model. Ultrasound Med Biol. 1990;16(5):449–458.

    Article  CAS  PubMed  Google Scholar 

  19. Roberts VH, Lo JO, Salati JA, et al. Quantitative assessment of placental perfusion by contrast-enhanced ultrasound in macaques and human subjects. Am J Obstet Gynecol. 2016;214(3):369. 361-e368.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kaufmann BA, Wei K, Lindner JR. Contrast echocardiography. Curr Probl Cardiol. 2007;32(2):51–96.

    Article  PubMed  Google Scholar 

  21. Heppner P, Lindner JR. Contrast ultrasound assessment of angio-genesis by perfusion and molecular imaging. Expert Rev Mol Diagn. 2005;5(3):447–455.

    Article  PubMed  Google Scholar 

  22. Lindner JR. Contrast ultrasound molecular imaging of inflammation in cardiovascular disease. Cardiovasc Res. 2009;84(2):182–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97(5):473–483.

    Article  CAS  PubMed  Google Scholar 

  24. Comstock SM, Pound LD, Bishop JM, et al. High-fat diet consumption during pregnancy and the early post-natal period leads to decreased alpha cell plasticity in the nonhuman primate. Mol Metab. 2012;2(1):10–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Acharya G, Sitras V, Erkinaro T, et al. Experimental validation of uterine artery volume blood flow measurement by Doppler ultra-sonography in pregnant sheep. Ultrasound Obstet Gynecol. 2007;29(4):401–406.

    Article  CAS  PubMed  Google Scholar 

  26. Lo JO, Schabel MC, Roberts VH, et al. Vitamin C supplementation ameliorates the adverse effects of nicotine on placental hemo-dynamics and histology in nonhuman primates. Am J Obstet Gynecol. 2015;212(3):370.e1-e8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Roberts VH, Pound LD, Thorn SR, et al. Beneficial and cautionary outcomes of resveratrol supplementation in pregnant nonhuman primates. FASEB J. 2014;28(6):2466–2477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Golub MS, Hogrefe CE, Tarantal AF, et al. Diet-induced iron deficiency anemia and pregnancy outcome in rhesus monkeys. Am J Clin Nutr. 2006;83(3):647–656.

    Article  CAS  PubMed  Google Scholar 

  29. Harding JE. The nutritional basis of the fetal origins of adult disease. Int J Epidemiol. 2001;30(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  30. Weech AA, Wollstein M, Goettsch E. Nutritional Edema in the Dog. V. Development of deficits in erythrocytes and hemoglobin on a diet deficient in protein. J Clin Invest. 1937;16(5):719–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cartwright GE, Wintrobe MM. Studies on free erythrocyte pro-toporphyrin, plasma copper, and plasmairon in protein-deficient and iron-deficient swine. J Biol Chem. 1948;176(2):571–583.

    Article  CAS  PubMed  Google Scholar 

  32. Shahidi NT, Diamond LK, Shwachman H. Anemia associated with protein deficiency. A study of 2 cases with cystic fibrosis. J Pediatr. 1961;59:533–542.

    Article  CAS  PubMed  Google Scholar 

  33. Lumey LH. Reproductive outcomes in women prenatally exposed to undernutrition: a review of findings from the Dutch famine birth cohort. Proc Nutr Soc. 1998;57(1):129–135.

    Article  CAS  PubMed  Google Scholar 

  34. Hendrie TA, Peterson PE, Short JJ, et al. Frequency of prenatal loss in a macaque breeding colony. Am J Primatol. 1996;40(1):41–53.

    Article  PubMed  Google Scholar 

  35. Trudinger BJ, Cook CM, Giles WB, Connelly A, Thompson RS. Umbilical artery flow velocity waveforms in high-risk pregnancy. Randomised controlled trial. Lancet. 1987;1(8526):188–190.

    Article  CAS  PubMed  Google Scholar 

  36. Baschat AA, Gembruch U, Reiss I, Gortner L, Weiner CP, Harman CR. Relationship between arterial and venous Doppler and perinatal outcome in fetal growth restriction. Ultrasound Obstet Gynecol. 2000;16(5):407–413.

    Article  CAS  PubMed  Google Scholar 

  37. Alfirevic Z, Stampalija T, Gyte GM. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev. 2010(1):CD007529.

  38. Stampalija T, Gyte GM, Alfirevic Z. Utero-placental Doppler ultrasound for improving pregnancy outcome. Cochrane Database Syst Rev. 2010(9):CD008363.

  39. Konje JC, Kaufmann P, Bell SC, Taylor DJ. A longitudinal study of quantitative uterine blood flow with the use of color power angiography in appropriate for gestational age pregnancies. Am J Obstet Gynecol. 2001;185(3):608–613.

    Article  CAS  PubMed  Google Scholar 

  40. Romo A, Carceller R, Tobajas J. Intrauterine growth retardation (IUGR): epidemiology and etiology. Pediatr Endocrinol Rev. 2009;6(suppl 3):332–336.

    PubMed  Google Scholar 

  41. Wu G, Pond WG, Flynn SP, Ott TL, Bazer FW. Maternal dietary protein deficiency decreases nitric oxide synthase and ornithine decarboxylase activities in placenta and endometrium of pigs during early gestation. J Nutr. 1998;128(12):2395–2402.

    Article  CAS  PubMed  Google Scholar 

  42. Kulandavelu S, Whiteley KJ, Qu D, Mu J, Bainbridge SA, Adam-son SL. Endothelial nitric oxide synthase deficiency reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant mice. Hypertension. 2012;60(1):231–238.

    Article  CAS  PubMed  Google Scholar 

  43. Kulandavelu S, Whiteley KJ, Bainbridge SA, Qu D, Adamson SL. Endothelial NO synthase augments fetoplacental blood flow, pla-cental vascularization, and fetal growth in mice. Hypertension. 2013;61(1):259–266.

    Article  CAS  PubMed  Google Scholar 

  44. Roberts CT, Sohlstrom A, Kind KL, et al. Maternal food restriction reduces the exchange surface area and increases the barrier thickness of the placenta in the guinea-pig. Placenta. 2001;22(2-3):177–185.

    Article  CAS  PubMed  Google Scholar 

  45. Lindner JR, Song J, Xu F, et al. Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation. 2000;102(22):2745–2750.

    Article  CAS  PubMed  Google Scholar 

  46. Teramo KA, Widness JA. Increased fetal plasma and amniotic fluid erythropoietin concentrations: markers of intrauterine hypoxia. Neonatology. 2009;95(2):105–116.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria H. J. Roberts PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, V.H.J., Lo, J.O., Lewandowski, K.S. et al. Adverse Placental Perfusion and Pregnancy Outcomes in a New Nonhuman Primate Model of Gestational Protein Restriction. Reprod. Sci. 25, 110–119 (2018). https://doi.org/10.1177/1933719117704907

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117704907

Keywords

Navigation