Skip to main content
Log in

Oxidative Stress in Granulosa-Lutein Cells From In Vitro Fertilization Patients

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Ovarian aging is associated with gradual follicular loss by atresia/apoptosis. Increased production of toxic metabolites such as reactive oxygen species (ROS) and reactive nitrogen species as well as external oxidant agents plays an important role in the process of ovarian senescence and in the pathogenesis of ovarian pathologies such as endometriosis and polycystic ovary syndrome (PCOS). This review provides a synthesis of available studies of oxidative stress (OS) in the ovary, focusing on the most recent evidence obtained in mural granulosa-lutein (GL) cells of in vitro fertilization patients. Synthesis of antioxidant enzymes such as peroxiredoxin 4, superoxide dismutase, and catalase and OS damage response proteins such as aldehyde dehydrogenase 3, member A2 decreases with aging in human GL cells, favoring an unbalance in ROS/antioxidants that mediates molecular damage and altered cellular function. The increase in OS in the granulosa cell correlates with diminished expression of follicle-stimulating hormone receptor (FSHR) and a dysregulation of the FSHR signaling pathway and may be implicated in disrupted steroidogenic function and poor response to FSH in women with aging. Women with endometriosis and PCOS have lower antioxidant production capacity that may contribute to abnormal follicular development and infertility. Further investigation of the signaling pathways involved in cellular response to OS could shed light into molecular characterization of these diseases and development of new treatment strategies to improve reproductive potential in these women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eichenlaub-Ritter U. Oocyte ageing and its cellular basis. Int J Dev Biol. 2012;56(10-12):841–852.

    Article  CAS  PubMed  Google Scholar 

  2. Tatone C, Amicarelli F, Carbone MC, et al. Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 2008;14(2):131–142.

    Article  CAS  PubMed  Google Scholar 

  3. Tatone C, Amicarelli F. The aging ovary—the poor granulosa cells. Fertil Steril. 2013;99(1):12–17.

    Article  CAS  PubMed  Google Scholar 

  4. Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod. 2012; 86(2):27.

    Article  PubMed  CAS  Google Scholar 

  5. Galli F, Piroddi M, Annetti C, Aisa C, Floridi E, Floridi A. Oxidative stress and reactive oxygen species. Contrib Nephrol. 2005;149:240–260.

    Article  CAS  PubMed  Google Scholar 

  6. Eichenlaub-Ritter U, Pacchierotti F, Bisphenol A. Effects on mammalian oogenesis and epigenetic integrity of oocytes: a case study exploring risks of endocrine disrupting chemicals. Biomed Res Int. 2015;2015:698795.

    Google Scholar 

  7. Erkekoglu P. Kocer-Gumusel B. Genotoxicity of phthalates. Toxicol Mech Methods. 2014;24(9):616–626.

    Article  CAS  PubMed  Google Scholar 

  8. Junaid M, Hashmi MZ, Malik RN, Pei DS. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: a review [published online August 25, 2016]. Environ Sci Pollut Res Int. 2016.

    Google Scholar 

  9. Risom L, Moller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res. 2005;592(1-2):119–137.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Staimer N, Gillen DL, et al. Associations of oxidative stress and inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly cohort. Environ Res. 2016;150:306–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rani V, Deep G, Singh RK, Palle K, Yadav UC. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci. 2016;148:183–193.

    Article  CAS  PubMed  Google Scholar 

  12. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta RK, Patel AK, Shah N, et al. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev. 2014;15(11):4405–4409.

    Article  PubMed  Google Scholar 

  14. Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev. 2016;2016:5698931.

    Google Scholar 

  15. Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013; 8(21):2003–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hjelmeland A, Zhang J. Metabolic, autophagic, and mitophagic activities in cancer initiation and progression. Biomed J. 2016; 39(2):98–106.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 2016;7(6): e2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Venkataraman K, Khurana S, Tai TC. Oxidative stress in aging— matters of the heart and mind. Int J Mol Sci. 2013;14(9):17897–17925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Agarwal A, Varghese AC, Sharma RK. Markers of oxidative stress and sperm chromatin integrity. Methods Mol Biol. 2009;590:377–402.

    Article  CAS  PubMed  Google Scholar 

  21. Cocuzza M, Sikka SC, Athayde KS, Agarwal A. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol. 2007; 33(5):603–621.

    Article  PubMed  Google Scholar 

  22. Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR. Etiologies of sperm oxidative stress. Int J Reprod Biomed (Yazd). 2016;14(4):231–240.

    CAS  Google Scholar 

  23. Saleh RA, Agarwal A, Nada EA, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79(suppl 3):1597–1605.

    Article  PubMed  Google Scholar 

  24. Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update. 2008;14(3):243–258.

    Article  CAS  PubMed  Google Scholar 

  25. Grizard G, Ouchchane L, Roddier H, et al. In vitro alachlor effects on reactive oxygen species generation, motility patterns and apop-tosis markers in human spermatozoa. Reprod Toxicol. 2007;23(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  26. Saleh RA, Agarwal A, Sharma RK, Nelson DR, Thomas A. Jr. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril. 2002;78(3):491–499.

    Article  PubMed  Google Scholar 

  27. Luderer U. Ovarian toxicity from reactive oxygen species. Vitam Horm. 2014;94:99–127.

    Article  CAS  PubMed  Google Scholar 

  28. Prasad S, Tiwari M, Pandey AN, Shrivastav TG, Chaube SK. Impact of stress on oocyte quality and reproductive outcome. J Biomed Sci. 2016;23:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Rizzo A, Roscino MT, Binetti F, Sciorsci RL. Roles of reactive oxygen species in female reproduction. Reprod Domest Anim. 2012;47(2):344–352.

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi T, Igarashi H, Amita M, Hara S, Matsuo K, Kurachi H. Molecular mechanism of poor embryo development in postovu-latory aged oocytes: mini review. J Obstet Gynaecol Res. 2013; 39(10):1431–1439.

    CAS  PubMed  Google Scholar 

  31. Tamura H, Takasaki A, Miwa I, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 2008;44(3):280–287.

    Article  CAS  PubMed  Google Scholar 

  32. Askoxylaki M, Siristatidis C, Chrelias C, et al. Reactive oxygen species in the follicular fluid of subfertile women undergoing in vitro fertilization: a short narrative review. J Endocrinol Invest. 2013;36(11):1117–1120.

    CAS  PubMed  Google Scholar 

  33. Borowiecka M, Wojsiat J, Polac I, Radwan M, Radwan P. Zbi-kowska HM. Oxidative stress markers in follicular fluid of women undergoing in vitro fertilization and embryo transfer. Syst Biol Reprod Med. 2012;58(6):301–305.

    Article  CAS  PubMed  Google Scholar 

  34. Singh AK, Chattopadhyay R, Chakravarty B, Chaudhury K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod Toxicol. 2013;42:116–124.

    Article  CAS  PubMed  Google Scholar 

  35. Velthut A, Zilmer M, Zilmer K, Kaart T, Karro H, Salumets A. Elevated blood plasma antioxidant status is favourable for achieving IVF/ICSI pregnancy. Reprod Biomed Online. 2013;26(4):345–352.

    Article  CAS  PubMed  Google Scholar 

  36. Da Broi MG, de Albuquerque FO, de Andrade AZ, Cardoso RL, Jordao Junior AA, Navarro PA. Increased concentration of 8-hydroxy-2-deoxyguanosine in follicular fluid of infertile women with endometriosis. Cell Tissue Res. 2016;366(1):231–242.

    Article  PubMed  CAS  Google Scholar 

  37. Donnez J, Binda MM, Donnez O, Dolmans MM. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis [published online August 10, 2016]. Fertil Steril. 2016.

    Google Scholar 

  38. Hevir N, Ribic-Pucelj M, Lanisnik RT. Disturbed balance between phase I and II metabolizing enzymes in ovarian endometriosis: a source of excessive hydroxy-estrogens and ROS? Mol Cell Endocrinol. 2013;367(1-2):74–84.

    Article  CAS  PubMed  Google Scholar 

  39. Nassif J, Abbasi SA, Nassar A. Abu-Musa A, Eid AA. The role of NADPH-derived reactive oxygen species production in the pathogenesis of endometriosis: a novel mechanistic approach. J Biol Regul Homeost Agents. 2016;30(1):31–40.

    CAS  PubMed  Google Scholar 

  40. Prieto L, Quesada JF, Cambero O, et al. Analysis of follicular fluid and serum markers of oxidative stress in women with infertility related to endometriosis. Fertil Steril. 2012;98:126–130.

    Article  CAS  PubMed  Google Scholar 

  41. Shigetomi H, Higashiura Y, Kajihara H, Kobayashi H. A potential link of oxidative stress and cell cycle regulation for development of endometriosis. Gynecol Endocrinol. 2012;28(11):897–902.

    Article  CAS  PubMed  Google Scholar 

  42. Kucukaydin Z, Duran C, Basaran M, et al. Plasma total oxidant and antioxidant status after oral glucose tolerance and mixed meal tests in patients with polycystic ovary syndrome. J Endocrinol Invest. 2016;39(10):1139–1148.

    Article  CAS  PubMed  Google Scholar 

  43. Suresh S, Vijayakumar T. Correlations of insulin resistance and serum testosterone levels with LH: FSH ratio and oxidative stress in women with functional ovarian hyperandrogenism. Indian J Clin Biochem. 2015;30(3):345–350.

    Article  CAS  PubMed  Google Scholar 

  44. Victor VM, Rovira-Llopis S, Banuls C, et al. Insulin resistance in PCOS patients enhances oxidative stress and leukocyte adhesion: role of myeloperoxidase. PLoS One. 2016;11(3): e0151960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gonzalez F, Nair KS, Daniels JK, Basal E, Schimke JM, Blair HE. Hyperandrogenism sensitizes leukocytes to hyperglycemia to promote oxidative stress in lean reproductive-age women. J Clin Endocrinol Metab. 2012;97(8):2836–2843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Papalou O, Victor VM, Diamanti-Kandarakis E. Oxidative stress in polycystic ovary syndrome. Curr Pharm Des. 2016;22(18):2709–2722.

    Article  CAS  PubMed  Google Scholar 

  47. Pertynska-Marczewska M, Diamanti-Kandarakis E, Zhang J, Merhi Z. Advanced glycation end products: a link between metabolic and endothelial dysfunction in polycystic ovary syndrome? Metabolism. 2015;64(11):1564–1573.

    Article  CAS  PubMed  Google Scholar 

  48. Zuo T, Zhu M, Xu W. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell longev. 2016; 2016:8589318.

    Google Scholar 

  49. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gonzalez-Fernandez R, Hernandez J. Martin-Vasallo P, Puopolo M, Palumbo A, Avila J. Expression levels of the oxidative stress response gene ALDH3A2 in granulosa-lutein cells are related to female age and infertility diagnosis. Reprod Sci. 2016;23(5):604–609.

    Article  CAS  PubMed  Google Scholar 

  51. Demozay D, Rocchi S, Mas JC, et al. Fatty aldehyde dehydrogenase: potential role in oxidative stress protection and regulation of its gene expression by insulin. J Biol Chem. 2004;279(8):6261–6270.

    Article  CAS  PubMed  Google Scholar 

  52. Qian Y, Shao L, Yuan C, et al. Implication of differential perox-iredoxin 4 expression with age in ovaries of mouse and human for ovarian aging. Curr Mol Med. 2016;16(3):243–251.

    Article  CAS  PubMed  Google Scholar 

  53. Tatone C, Carbone MC, Falone S, et al. Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells. Mol Hum Reprod. 2006;12(11):655–660.

    Article  CAS  PubMed  Google Scholar 

  54. Meng Y, Qian Y, Gao L, Cai LB, Cui YG, Liu JY. Downregulated expression of peroxiredoxin 4 in granulosa cells from polycystic ovary syndrome. PIoS One. 2013;8(10):e76460.

    Article  CAS  Google Scholar 

  55. Palumbo A, Rotoli D. Gonzalez-Fernandez R, Hernandez J, Avila J. Glucose-induced oxidative stress is associated with increased ALDH3A2 expression and altered response to FSH in cultured human granulosa-lutein cells (GL cells) from young oocyte donors. Fertil Steril. 2013;100(3):S427.

    Article  Google Scholar 

  56. Palumbo A, Rotoli D. Gonzalez-Fernandez R, Hernandez J, Avila J. Oxidative stress affects FSH response in human granulosa-lutein cells. Hum Reprod. 2014;29(suppl 1):i308.

    Google Scholar 

  57. Karuputhula NB, Chattopadhyay R, Chakravarty B, Chaudhury K. Oxidative status in granulosa cells of infertile women undergoing IVF. Syst Biol Reprod Med. 2013;59(2):91–98.

    Article  CAS  PubMed  Google Scholar 

  58. Saito H, Seino T, Kaneko T, Nakahara K, Toya M, Kurachi H. Endometriosis and oocyte quality. Gynecol Obstet Invest. 2002; 53(suppl 1):46–51.

    Article  PubMed  Google Scholar 

  59. Seino T, Saito H, Kaneko T, Takahashi T, Kawachiya S, Kurachi H. Eight-hydroxy-2’-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an in vitro fertilization-embryo transfer program. Fertil Steril. 2002;77(6):1184–1190.

    Article  PubMed  Google Scholar 

  60. Zhao Y, Zhang C, Huang Y, et al. Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/ AKT/NF-kappaB signaling in the granulosa cells of PCOS patients. J Clin Endocrinol Metab. 2015;100(1):201–211.

    Article  CAS  PubMed  Google Scholar 

  61. Seleem AK, El Refaeey AA, Shaalan D, Sherbiny Y, Badawy A. Superoxide dismutase in polycystic ovary syndrome patients undergoing intracytoplasmic sperm injection. J Assist Reprod Genet. 2014;31(4):499–504.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Palumbo MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila, J., González-Fernández, R., Rotoli, D. et al. Oxidative Stress in Granulosa-Lutein Cells From In Vitro Fertilization Patients. Reprod. Sci. 23, 1656–1661 (2016). https://doi.org/10.1177/1933719116674077

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116674077

Keywords

Navigation