Skip to main content

Advertisement

Log in

Hypoxia-Mediated Soluble Fms-Like Tyrosine Kinase 1 Increase Is Not Attenuated in Interleukin 6-Deficient Mice

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The soluble fms-like tyrosine kinase 1 (sFlt-1), known to be increased in the serum of preeclamptic patients, is a relevant factor in causing maternal symptoms like hypertension and proteinuria. In this study, we aimed to reveal whether hypoxia is a cause of increased sFlt-1 levels and inflammation markers in vivo and whether these symptoms can be attenuated by interleukin 6 (IL-6) depletion. For this purpose, pregnant wild-type (wt) mice or IL-6−/− mice on embryonic day 16 were placed under either normoxic (20.9% oxygen) or hypoxic (6% oxygen) conditions for 6 hours. This led to a rise of sFlt-1 levels in maternal serum, independent of the IL-6 status of the dam. Increased maternal sFlt-1 serum levels were, however, not due to an increase in sFlt-1 messenger RNA levels in the placenta. Moreover, there was no increase in inflammatory markers in neither wt mice nor IL-6−/− mice. This suggests that hypoxia alone does not contribute to the induction of an inflammatory placenta. Also, the hypoxia-induced rise in sFlt-1 levels seems not to be mediated by IL-6 in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilburn BA, Wang J, Duniec-Dmuchowski ZM, Leach RE, Romero R, Armant DR. Extracellular matrix composition and hypoxia regulate the expression of HLA-G and integrins in a human trophoblast cell line. Biol Reprod. 2000;62(3):739–747.

    Article  CAS  PubMed  Google Scholar 

  2. Graham CH, Fitzpatrick TE, McCrae KR. Hypoxia stimulates urokinase receptor expression through a heme protein-dependent pathway. Blood. 1998;91(9):3300–3307.

    Article  CAS  PubMed  Google Scholar 

  3. James JL, Stone PR, Chamley LW. The regulation of trophoblast differentiation by oxygen in the first trimester of pregnancy. Hum Reprod Update. 2006;12(2):137–144.

    Article  CAS  PubMed  Google Scholar 

  4. Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 1992;80(2):283–285.

    CAS  PubMed  Google Scholar 

  5. Ilekis JV, Reddy UM, Roberts JM. Preeclampsia—a pressing problem: an executive summary of a National Institute of Child Health and Human Development workshop. Reprod Sci. 2007; 14(6):508–523.

    Article  CAS  PubMed  Google Scholar 

  6. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet Gynecol. 2002;99(1):159–167.

    Google Scholar 

  7. Guzin K, Tomruk S, Tuncay YA, et al. The relation of increased uterine artery blood flow resistance and impaired trophoblast invasion in pre-eclamptic pregnancies. Arch Gynecol Obstet. 2005;272(4):283–288.

    Article  PubMed  Google Scholar 

  8. Naicker T, Khedun SM, Moodley J, Pijnenborg R. Quantitative analysis of trophoblast invasion in preeclampsia. Acta Obstet Gynecol Scand. 2003;82(8):722–729.

    Article  PubMed  Google Scholar 

  9. Fisher SJ. The placental problem: linking abnormal cytotrophoblast differentiation to the maternal symptoms of preeclampsia. Reprod Biol Endocrinol. 2004;2:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7): 672–683.

    Article  CAS  PubMed  Google Scholar 

  11. Rusterholz C, Hahn S, Holzgreve W. Role of placentally produced inflammatory and regulatory cytokines in pregnancy and the etiology of preeclampsia. Semin Immunopathol. 2007;29(2): 151–162.

    Article  CAS  PubMed  Google Scholar 

  12. Enquobahrie DA, Meller M, Rice K, Psaty BM, Siscovick DS, Williams MA. Differential placental gene expression in preeclampsia. Am J Obstet Gynecol. 2008;199(5):566. e561–e511.

    Article  CAS  Google Scholar 

  13. Hennessy A, Pilmore HL, Simmons LA, Painter DM. A deficiency of placental IL-10 in preeclampsia. J Immunol. 1999; 163(6):3491–3495.

    CAS  PubMed  Google Scholar 

  14. Bowen RS, Gu Y, Zhang Y, Lewis DF, Wang Y. Hypoxia promotes interleukin-6 and -8 but reduces interleukin-10 production by placental trophoblast cells from preeclamptic pregnancies. J Soc Gynecol Investig. 2005;12(6):428–432.

    Article  CAS  PubMed  Google Scholar 

  15. Lockwood CJ, Yen CF, Basar M, et al. Preeclampsia-related inflammatory cytokines regulate interleukin-6 expression in human decidual cells. Am J Pathol. 2008;172(6):1571–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benyo DF, Miles TM, Conrad KP. Hypoxia stimulates cytokine production by villous explants from the human placenta. J Clin Endocrinol Metab. 1997;82(5): 1582–1588.

    CAS  PubMed  Google Scholar 

  17. Hung TH, Charnock-Jones DS, Skepper JN, Burton GJ. Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia-reoxygenation causes endothelial cell activation in vitro: a potential mediator of the inflammatory response in preeclampsia. Am J Pathol. 2004;164(3):1049–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Royle C, Lim S, Xu B, Tooher J, Ogle R, Hennessy A. Effect of hypoxia and exogenous IL-10 on the pro-inflammatory cytokine TNF-alpha and the anti-angiogenic molecule soluble Flt-1 in placental villous explants. Cytokine. 2009;47(1):56–60.

    Article  CAS  PubMed  Google Scholar 

  19. Peltier MR, Gurzenda EM, Murthy A, et al. Can oxygen tension contribute to an abnormal placental cytokine milieu? Am J Reprod Immunol. 2011;66(4):279–285.

    Article  PubMed  Google Scholar 

  20. Rajakumar A, Powers RW, Hubel CA, et al. Novel soluble Flt-1 isoforms in plasma and cultured placental explants from normotensive pregnant and preeclamptic women. Placenta. 2009; 30(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  21. George EM, Cockrell K, Adair TH, Granger JP. Regulation of sFlt-1 and VEGF secretion by adenosine under hypoxic conditions in rat placental villous explants. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1629-R1633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nevo O, Soleymanlou N, Wu Y, et al. Increased expression of sFlt-1 in in vivo and in vitro models of human placental hypoxia is mediated by HIF-1. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1085-1093.

    Article  CAS  PubMed  Google Scholar 

  23. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12): 5510–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lai Z, Kalkunte S, Sharma S. A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension. 2011;57(3):505–514.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou CC, Irani RA, Dai Y, et al. Autoantibody-mediated IL-6-dependent endothelin-1 elevation underlies pathogenesis in a mouse model of preeclampsia. J Immunol. 2011;186(10):6024–6034.

    Article  CAS  PubMed  Google Scholar 

  26. Trollmann R, Strasser K, Keller S, et al. Placental HIFs as markers of cerebral hypoxic distress in fetal mice. Am J Physiol Regul Integr Comp Physiol. 2008;295(6):R1973-R1981.

    Article  CAS  PubMed  Google Scholar 

  27. Rother E, Kuschewski R, Alcazar MA, et al. Hypothalamic JNK1 and IKKbeta activation and impaired early postnatal glucose metabolism after maternal perinatal high-fat feeding. Endocrinology. 2012;153(2):770–781.

    Article  CAS  PubMed  Google Scholar 

  28. Hegen M, Gaestel M, Nickerson-Nutter CL, Lin LL, Telliez JB. MAPKAP kinase 2-deficient mice are resistant to collagen-induced arthritis. J Immunol. 2006;177(3):1913–1917.

    Article  CAS  PubMed  Google Scholar 

  29. Yang J, Rosen SD, Bendele P, Hemmerich S. Induction of PNAd and N-acetylglucosamine 6-O-sulfotransferases 1 and 2 in mouse collagen-induced arthritis. BMC Immunol. 2006;7:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Huckle WR, Roche RI. Post-transcriptional control of expression of sFlt-1, an endogenous inhibitor of vascular endothelial growth factor. J Cell Biochem. 2004;93(1): 120–132.

    Article  CAS  PubMed  Google Scholar 

  31. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005; 365(9461):785–799.

    Article  PubMed  Google Scholar 

  32. Wang A, Rana S, Karumanchi SA. Preeclampsia: the role of angiogenic factors in its pathogenesis. Physiology (Bethesda). 2009;24:147–158.

    Google Scholar 

  33. Kim YN, Lee DS, Jeong DH, Sung MS, Kim KT. The relationship of the level of circulating antiangiogenic factors to the clinical manifestations of preeclampsia. Prenat Diagn. 2009;29(5):464–470.

    Article  CAS  PubMed  Google Scholar 

  34. Ahmad S, Ahmed A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ Res. 2004;95(9):884–891.

    Article  CAS  PubMed  Google Scholar 

  35. He Y, Smith SK, Day KA, Clark DE, Licence DR, Charnock-Jones DS. Alternative splicing of vascular endothelial growth factor (VEGF)-R1 (FLT-1) pre-mRNA is important for the regulation of VEGF activity. Mol Endocrinol. 1999;13(4):537–545.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao S, Gu Y, Fan R, Groome LJ, Cooper D, Wang Y. Proteases and sFlt-1 release in the human placenta. Placenta. 2010;31(6): 512–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA. 1993;90(22): 10705–10709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Herse F, Fain JN, Janke J, et al. Adipose tissue-derived soluble fms-like tyrosine kinase 1 is an obesity-relevant endogenous paracrine adipokine. Hypertension. 2011;58(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  39. Lee MC, Wei SC, Tsai-Wu JJ, Wu CH, Tsao PN. Novel PKC signaling is required for LPS-induced soluble Flt-1 expression in macrophages. J Leukoc Biol. 2008;84(3):835–841.

    Article  CAS  PubMed  Google Scholar 

  40. Xiong Y, Liebermann DA, Tront JS, et al. Gadd45a stress signaling regulates sFlt-1 expression in preeclampsia. J Cell Physiol. 2009;220(3):632–639.

    Article  CAS  PubMed  Google Scholar 

  41. van der Poll T, Keogh CV, Guirao X, Buurman WA, Kopf M, Lowry SF. Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumonia. J Infect Dis. 1997; 176(2):439–444.

    Article  PubMed  Google Scholar 

  42. Rossant J, Cross JC. Placental development: lessons from mouse mutants. Nat Rev Genet. 2001;2(7):538–548.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Appel Dr. rer. nat..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appel, S., Turnwald, EM., Ankerne, J. et al. Hypoxia-Mediated Soluble Fms-Like Tyrosine Kinase 1 Increase Is Not Attenuated in Interleukin 6-Deficient Mice. Reprod. Sci. 22, 735–742 (2015). https://doi.org/10.1177/1933719114557898

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114557898

Keywords

Navigation