Skip to main content
Log in

Caloric Restriction Promotes the Reserve of Follicle Pool in Adult Female Rats by Inhibiting the Activation of Mammalian Target of Rapamycin Signaling

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Caloric restriction (CR) is known to increase the number of primordial follicles and prolong the reproductive life span. However, how CR modulates follicular development is not well understood. In the present study, we examined the effects of CR on follicular development in rats and investigated the underlying mechanism. After 10 weeks of CR or high-fat diet, ovarian follicles at different developmental stages were examined by histological analysis. Plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estrogen (ESG) were measured, and the levels of mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K), and phosphorylated p70S6K in the ovary were detected by Western blot. The results showed that the reserve of follicle pool in CR rats was increased, accompanied by decreased level of phosphorylated p70S6K in the ovary, and decreased serum LH, FSH, and ESG levels. Taken together, these results suggest that CR may suppress ovarian follicular development and enhance the follicle pool reserve by inhibiting mTOR signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Speakman JR, Mitchell SE. Caloric restriction. Mol Aspects Med. 2011;32(3):159–221.

    Article  CAS  PubMed  Google Scholar 

  2. Nelson JF, Gosden RG, Felicio LS. Effect of dietary restriction on estrous cyclicity and follicular reserves in aging C57BL/6 J mice. Biol Reprod. 1985;32(3):515–522.

    Article  CAS  PubMed  Google Scholar 

  3. Selesniemi K, Lee HJ, Tilly JL. Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell. 2008;7(5):622–629.

    Article  CAS  PubMed  Google Scholar 

  4. Li L, Fu YC, Xu JJ, Chen XC, Lin XH, Luo LL. Caloric restriction promotes the reproductive capacity of female rats via modulating the level of insulin-like growth factor-1 (IGF-1). Gen Comp Endocrinol. 2011;174(2):232–237.

    Article  CAS  PubMed  Google Scholar 

  5. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200–214.

    CAS  PubMed  Google Scholar 

  6. Erickson GF. Role of growth factors in ovary organogenesis. J Soc Gynecol Investig. 2001;8:S13–S16.

    CAS  PubMed  Google Scholar 

  7. Liu K, Rajareddy S, Liu L, et al. Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev Biol. 2006;299(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  8. Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009;30(5): 438–464.

    Article  CAS  PubMed  Google Scholar 

  9. Reddy P, Zheng W, Liu K. Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol Metab. 2010;21(2):96–103.

    Article  CAS  PubMed  Google Scholar 

  10. Adhikari D, Flohr G, Gorre N, et al. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod. 2009;15(12):765–770.

    Article  CAS  PubMed  Google Scholar 

  11. Adhikari D, Zheng W, Shen Y, et al. Tsc/mTORCl signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet. 2010;19(3):397–410.

    Article  CAS  PubMed  Google Scholar 

  12. Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000;103:253–262.

    Article  CAS  PubMed  Google Scholar 

  13. Martin DE, Hall MN. The expanding TOR signaling network. Curr Opin Cell Biol. 2005;17(2):158–166.

    Article  CAS  PubMed  Google Scholar 

  14. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–484.

    Article  CAS  PubMed  Google Scholar 

  15. Chiang GG, Abraham RT. Targeting the mTOR signaling network in cancer. Trends Mol Med. 2007;13(10):433–442.

    Article  CAS  PubMed  Google Scholar 

  16. Tsang CK, Qi H, Liu LF, Zheng XF. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today. 2007; 12(3-4): 112–124.

    Article  CAS  PubMed  Google Scholar 

  17. Thoreen CC, Sabatini DM. Rapamycin inhibits mTORCl, but not completely. Autophagy. 2009;5(5):725–726.

    Article  CAS  PubMed  Google Scholar 

  18. Blagosklonny MV. Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans). Cell Cycle 2010;9(4):683–688.

    Article  CAS  PubMed  Google Scholar 

  19. Marcondes FK, Bianchi FJ, Tanno AP. Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol. 2002;62(4A):609–614.

    Article  CAS  PubMed  Google Scholar 

  20. Schedin P, Mitrenga T, Kaeck M. Estrous cycle regulation of mammary epithelial cell proliferation, differentiation, and death in the Sprague-Dawley rat: a model for investigating the role of estrous cycling in mammary carcinogenesis. J Mammary Gland Biol Neoplasia. 2000;5(2):211–225.

    Article  CAS  PubMed  Google Scholar 

  21. Luo LL, Huang J, Fu YC, Xu JJ, Qian YS. Effects of tea polyphenols on ovarian development in rats. J Endocrinol Invest. 2008; 31(12):1110–1118.

    Article  CAS  PubMed  Google Scholar 

  22. Tsukamura H, Thompson RC, Tsukahara S, et al. Intracerebro-ventricular administration of melanin-concentrating hormone suppresses pulsatile luteinizing hormone release in the female rat. J Neuroendocrinal. 2000;12(6):529–534.

    Article  CAS  PubMed  Google Scholar 

  23. Tokunaga C, Yoshino K, Yonezawa K. mTOR integrates amino acid- and energy-sensing pathways. Biochem Biophys Res Com-mun. 2004;313(2):443–446.

    Article  CAS  PubMed  Google Scholar 

  24. Tzatsos A, Kandror KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol. 2006;26(l):63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roa J, Garcia Galiano D, Varela L, et al. The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kissl system. Endocrinology. 2009; 150(11):5016–5026.

    Article  CAS  PubMed  Google Scholar 

  26. Gibson DA, Saunders PT. Estrogen dependent signaling in reproductive tissues - a role for estrogen receptors and estrogen related receptors. Mol Cell Endocrinol. 2012;348(2): 361–372.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-li Luo MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Fu, Yc., Xu, Jj. et al. Caloric Restriction Promotes the Reserve of Follicle Pool in Adult Female Rats by Inhibiting the Activation of Mammalian Target of Rapamycin Signaling. Reprod. Sci. 22, 60–67 (2015). https://doi.org/10.1177/1933719114542016

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114542016

Keywords

Navigation