Skip to main content

Advertisement

Log in

Diabetes-Induced Oxidative DNA Damage Alters p53-p21CIP1/Waf1 Signaling in the Rat Testis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Diabetes is increasingly becoming a major cause of large-scale morbidity and mortality. Diabetes-induced oxidative stress alters numerous intracellular signaling pathways. Although testicular dysfunction is a major concern in diabetic men, the mechanistic alterations in the testes that lead to hypogonadism are not yet clear. Oxidative mitochondrial DNA damage, as indicated by 7,8-dihydro-8-oxo-2′-deoxyguanosine, and phosphorylation of p53 at ser315 residue (p-p53ser315) increased in a stage- and cell-specific manner in the testes of rats that were diabetic for 1 month (DM1). Prolongation of diabetes for 3 months (DM3) led to an increase in nuclear oxidative DNA damage in conjunction with a decrease in the expression of p-p53ser315. The nuclei of pachytene and preleptotene spermatocytes, steps 1, 11, and 12 spermatids, secondary spermatocytes and the Sertoli cells, and the meiotic figures showed an increase in the expression of p-p53ser315. An increase in the expression of a downstream target of p53 and protein 21cyclin-dependent kinase interacting protein 1/wild-type p53-activated factor 1 (p21CIP1/Waf1) in both diabetic groups did not show any time-dependent effects but occurred concurrent with an upregulation of p-p53ser315 in DM1 and a downregulation of the protein in DM3. In diabetic groups, the expression of p21CIP1/Waf1 was mainly cytoplasmic but also perinuclear in pachytene spermatocytes and round spermatids. The cytoplasmic localization of p21CIP1/Waf1 may be suggestive of an antiapoptotic role for the protein. The perinuclear localization is probably related to the cell cycle arrest meant for DNA damage repair. Diabetes upregulates p21CIP1/Waf1 signaling in testicular germ cells in association with alteration in p-p53ser315 expression, probably to counteract DNA damage-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–787.

    Article  CAS  PubMed  Google Scholar 

  2. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nature Rev. 2011;11(2):98–107.

    CAS  Google Scholar 

  3. Evans JL, Ira ED, Maddux GBA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine Rev. 2002;23(5):599–622.

    Article  CAS  Google Scholar 

  4. Golbidi S, Badran M, Laher I. Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Exp Diabetes Res. 2012; 2012:941868.

    Article  PubMed  CAS  Google Scholar 

  5. Marshall SM, Flyvbjerg A. Diabetic nephropathy. In: Holt R, Cockram C, Flyvbjerg A, Goldstein B, eds. Textbook of Diabetes, 4th Edition. Hoboken, NJ: Blckwell Publishing; 2010:599–614.

    Chapter  Google Scholar 

  6. Sun JK, Keenan HA, Cavallerano JD, et al. Protection from retinopathy and other complications in patients with type 1 diabetes of extreme duration: the Joslin 50-year medalist study. Diabetes Care. 2011 ;34(4):968–974.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Saboor Aftab SA, Kumar S, Barber TM. The role of obesity and type 2 diabetes mellitus in the development of male obesity-associated secondary hypogonadism. Clin Endocrinol (Oxf). 2013;78(3):330–337.

    Article  CAS  Google Scholar 

  8. Shrilatha B, Muralidhara. Early oxidative stress in testis and epididymal sperm in streptozotocin-induced diabetic mice: its progression and genotoxic consequences. Reprod Toxicol. 2007;23(4):578–587.

    Article  CAS  PubMed  Google Scholar 

  9. Rama Raju GA, Jaya Prakash G, Murali Krishna K, Madan K, Siva Narayana T, Ravi Krishna CH. Noninsulin-dependent diabetes mellitus: effects on sperm morphological and functional characteristics, nuclear DNA integrity and outcome of assisted reproductive technique. Andrologia. 2012;44(suppl l):490–498.

    Article  PubMed  CAS  Google Scholar 

  10. Condorelli RA, Calogero AE, Vicari E, et al. Vascular regenerative therapies for the treatment of erectile dysfunction: current approaches. Andrology. 2013;l(4):533–540.

    Article  CAS  PubMed  Google Scholar 

  11. Narayana K, Yousif MH, El-Hashim AZ, Makki B, Akhtar S, Benter IF. Role of angiotensin II and angiotensin-(l–7) in diabetes-induced oxidative DNA damage in the corpus caverno-sum. Fertil Steril. 2013;100(l):226–233.

    Article  CAS  Google Scholar 

  12. Chandrashekar KN, Muralidhara. Evidence of oxidative stress and mitochondrial dysfunctions in the testis of prepubertal diabetic rats. Int J Impot Res. 2009;21(3):198–206.

    Article  CAS  PubMed  Google Scholar 

  13. Kanter M, Aktas C, Erboga M. Curcumin attenuates testicular damage, apoptotic germ cell death, and oxidative stress in streptozotocin-induced diabetic rats. Mol Nutr Food Res. 2013; 57(9):1578–1585.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao Y, Zhao H, Zhai X, et al. Effects of Zn deficiency, antioxidants, and low-dose radiation on diabetic oxidative damage and cell death in the testis. Toxicol Mech Methods. 2013;23(l):42–47.

    Article  CAS  PubMed  Google Scholar 

  15. Agbaje IM, Rogers DA, McVicar CM, et al. Insulin dependant diabetes mellitus: implications for male reproductive function. Hum Reprod. 2007;22(7):1871–1877.

    Article  CAS  PubMed  Google Scholar 

  16. Kushwaha S, Jena GB. Enalapril reduces germ cell toxicity in streptozotocin-induced diabetic rat: investigation on possible mechanisms. Naunyn Schmiedebergs Arch Pharmacol. 2012; 385(2):111–124.

    Article  CAS  PubMed  Google Scholar 

  17. Mallidis C, Agbaje IM, Rogers DA, et al. Advanced glycation end products accumulate in the reproductive tract of men with diabetes. Int J Androl. 2009;32(4):295–305.

    Article  CAS  PubMed  Google Scholar 

  18. O’Neill J, Czerwiec A, Agbaje I, et al. Differences in mouse models of diabetes mellitus in studies of male reproduction. Int J Androl. 2010;33(5):709–716.

    Article  PubMed  Google Scholar 

  19. Mallidis C, Agbaje I, O’Neill J, McClure N. The influence of type 1 diabetes mellitus on spermatogenic gene expression. Fertil Steril. 2009;92(6):2085–2087.

    Article  CAS  PubMed  Google Scholar 

  20. Roy S, Metya SK, Rahaman N, Sannigrahi S, Ahmed F. Ferulic acid in the treatment of post-diabetes testicular damage: relevance to the down regulation of apoptosis correlates with antioxidant status via modulation of TGF-β1, IL-1β and Akt signalling. Cell Biochem Funct. 2014;32(1):115-124. doi: 10.1002/cbf.2983.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang X, Zhang C, Xin Y, et al. Protective effect of FGF21 on type 1 diabetes-induced testicular apoptotic cell death probably via both mitochondrial- and endoplasmic reticulum stress-dependent pathways in the mouse model. Toxicol Lett. 2013;219(l):65–76.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao Y, Tan Y, Dai J, et al. Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicol Lett. 2011;200(1–2):100–106.

    Article  CAS  PubMed  Google Scholar 

  23. May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene. 1999;18(53): 7621–7636.

    Article  CAS  PubMed  Google Scholar 

  24. Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic streses. Eur J Biochem. 2001; 268(10):2764–2772.

    Article  CAS  PubMed  Google Scholar 

  25. Sanli T, Steinberg GR, Singh G, Tsakiridis T. AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther. 2014;15(2):156–169.

    Article  CAS  PubMed  Google Scholar 

  26. Abbas T, Dutta A. P21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9(6):400–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cmielová J, Rezáčová M. p21Cipl/Wafl protein and its function based on a subcellular localization. J Cell Biochem. 2011; 112(12):3502–3506.

    Article  PubMed  CAS  Google Scholar 

  28. Narayana K, Verghese S, Jacob S. L-Ascorbic acid partially protects two cycles of cisplatin chemotherapy-induced testis damage and oligo-astheno-teratospermia in a mouse model. Exp Toxicol Pathol. 2009;61(6):553–563.

    Article  CAS  PubMed  Google Scholar 

  29. Narayana K. Cisplatin induces duplex 3’ overhangs and 5’ blunt ends in epididymal epithelium in a Bax-dependent manner without any protection from L-ascorbic acid. Eur J Pharmacol. 2010; 641(2–3):238–245.

    Article  CAS  PubMed  Google Scholar 

  30. Narayana K, Al-Bader M, Mousa A, Khan KM. Molecular effects of chemotherapeutic drugs and their modulation by antioxidants in the testis. Eur J Pharmacol. 2012;674(2–3):207–216.

    Article  CAS  PubMed  Google Scholar 

  31. Tsounapi P, Saito M, Dimitriadis F, et al. Antioxidant treatment with edaravone or taurine ameliorates diabetes-induced testicular dysfunction in the rat. Mol Cell Biochem. 2012;369(l–2):195–204.

    Article  CAS  PubMed  Google Scholar 

  32. Broedbaek K, Weimann A, Stovgaard ES, Poulsen HE. Urinary 8-oxo-7,8-dihydro-2’-deoxyguanosine as a biomarker in type 2 diabetes. Free Radic Biol Med. 2011;51(8):1473–1479.

    Article  CAS  PubMed  Google Scholar 

  33. Kyathanahalli C, Bangalore S, Hanumanthappa K, Muralidhara. Experimental diabetes-induced testicular damage in prepubertal rats. J Diabetes. 2013;6(l):48–59.

    Article  PubMed  CAS  Google Scholar 

  34. Rato L, Duarte AI, Tomás GD, et al. Pre-diabetes alters testicular PGCl-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochim Biophys Acta. 2014;1837(3):335–344.

    Article  CAS  PubMed  Google Scholar 

  35. Koh PO. Streptozotocin-induced diabetes increases the interaction of Bad/Bcl-XL and decreases the binding of pBad/14–3–3 in rat testis. Life Sci. 2007;81(13):1079–1084.

    Article  CAS  PubMed  Google Scholar 

  36. Vendramini V, Cedenho AP, Miraglia SM, Spaine DM. Reproductive function of the male obese Zucker Rats: alteration in sperm production and sperm DNA damage. Reprod Sci. 2014; 21(2):221–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mallidis C, Agbaje IM, Rogers DA, et al. Advanced glycation end products accumulate in the reproductive tract of men with diabetes. Int J Androl. 2008;32(4):295–305.

    Article  PubMed  CAS  Google Scholar 

  38. Mirzayans R, Andrais B, Scott A, Murray D. New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol, 2012;2012: 170325. doi: 10.1155/2012/170325.

    Google Scholar 

  39. Waterman MJ, Stavridi ES, Waterman JL, Halazonetis TD. ATM- dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet. 1998;19(2):175–178.

    Article  CAS  PubMed  Google Scholar 

  40. Li L, Ljungman M, Dixon JE. The human Cdcl4 phosphatases interact with and dephosphorylate the tumor suppressor protein p53. J Biol Chem. 2000;275(4):2410–2414.

    Article  CAS  PubMed  Google Scholar 

  41. Katayama H, Sasai K, Kawai H, et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet. 2004;36(l):55–62.

    Article  CAS  PubMed  Google Scholar 

  42. Heo JI, Oh SJ, Kho YJ, et al. ERK mediates anti-apoptotic effect through phosphorylation and cytoplasmic localization of p21Wafl/Cipl/Sdi in response to DNA damage in normal human embryonic fibroblast (HEF) cells. Mol Biol Rep. 2011;38(4):2785–2791.

    Article  CAS  PubMed  Google Scholar 

  43. Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E. Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat Res. 2010;704(l–3): 12–20.

    Article  CAS  PubMed  Google Scholar 

  44. Rousseau D, Cannella D, Boulaire J, Fitzgerald P, Fotedar A, Fotedar R. Growth inhibition by CDK-cyclin and PCNA binding domains of p21 occurs by distinct mechanisms and is regulated by ubiquitin-proteasome pathway. Oncogene. 1999;18(30):4313–4325.

    Article  CAS  PubMed  Google Scholar 

  45. Hwang CY, Lee C, Kwon KS. Extracellular signal-regulated kinase 2-dependent phosphorylation induces cytoplasmic localization and degradation of p21Cipl. Mol Cell Biol. 2009;29(12):3379–3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Didenko W, Ngo H, Baskin DS. Early necrotic DNA degradation: presence of blunt-ended DNA breaks, 3’ and 5’ overhangs in apoptosis, but only 5’ overhangs in early necrosis. Am J Pathol. 2003;162(5):1571–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Narayana K, Raghupathy R. DNA damage in lead-exposed hepatocytes: coexistence of apoptosis and necrosis? Drug Chem Toxicol. 2012;35(2):208–217.

    Article  CAS  PubMed  Google Scholar 

  48. Macleod KF, Sherry N, Hannon G, et al. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 1995;9(8):935–944.

    Article  CAS  PubMed  Google Scholar 

  49. Javelaud D, Besancon F. Inactivation of p21WAFl sensitizes cells to apoptosis via an increase of both pl4ARF and p53 levels and an alteration of the Bax/Bcl-2 ratio. J Biol Chem. 2002; 277(40):37949–37954.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayana Kilarkaje PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilarkaje, N., Al-Bader, M.M. Diabetes-Induced Oxidative DNA Damage Alters p53-p21CIP1/Waf1 Signaling in the Rat Testis. Reprod. Sci. 22, 102–112 (2015). https://doi.org/10.1177/1933719114533729

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114533729

Keywords

Navigation