Skip to main content

Advertisement

Log in

Normal and Premature Rupture of Fetal Membranes at Term Delivery Differ in Regional Chemotactic Activity and Related Chemokine/Cytokine Production

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

A gradient of immunological mediators exists in the fetal membranes from the periplacental zone (PZ) to the rupture zone (RZ) at term delivery (rupture of fetal membranes [ROM]). However, it is unknown if this gradient is different in premature rupture of these tissues (premature rupture of fetal membranes [PROM]). We therefore analyzed leukocyte chemotactic activity and chemokine/cytokine production in fetal membrane zones in ROM and PROM. In ROM, leukocyte chemotactic activity increased from the PZ to the RZ; however, this did not occur in PROM. This was due to consistently elevated leukocyte chemotactic activity in PROM compared to ROM tissues. In the RZ, ROM was characterized by increased T-cell attraction and high levels of chemokine (C-X-C motif) ligand 8 (CXCL-8)/interleukin 8, and PROM by increased granulocyte attraction and high levels of granulocyte-macrophage colony-stimulating factor and CXCL-10/interferon gamma-induced protein 10. We conclude that normal and premature rupture of fetal membranes differ in regional chemotactic activity and related chemokine/cytokine production, which may represent evidence for differential mechanisms of rupture at term delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alger LS, Pupkin MJ. Etiology of preterm premature rupture of the membranes. Clin Obstet Gynecol. 1986;29(4):758–770.

    Article  CAS  PubMed  Google Scholar 

  2. Parry S, Strauss JF 3rd. Premature rupture of the fetal membranes. N Engl J Med. 1998;338(10):663–670.

    Article  CAS  PubMed  Google Scholar 

  3. Lockwood CJ, Kuczynski E. Markers of risk for preterm delivery. J Perinat Med. 1999;27(1):5–20.

    Article  CAS  PubMed  Google Scholar 

  4. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342(20):1500–1507.

    Article  CAS  PubMed  Google Scholar 

  5. Hack M, Fanaroff AA. Outcomes of extremely immature infants–a perinatal dilemma. N Engl J Med. 1993;329(22):1649–1650.

    Article  CAS  PubMed  Google Scholar 

  6. McCormick MC. The contribution of low birth weight to infant mortality and childhood morbidity. N Engl J Med. 1985;312(2): 82–90.

    Article  CAS  PubMed  Google Scholar 

  7. Menon R, Fortunato SJ. The role of matrix degrading enzymes and apoptosis in rupture of membranes. J Soc Gynecol Investig. 2004;11(7):427–437.

    Article  CAS  PubMed  Google Scholar 

  8. Lappas M, Riley C, Lim R, et al. MAPK and AP-1 proteins are increased in term pre-labour fetal membranes overlying the cervix: regulation of enzymes involved in the degradation of fetal membranes. Placenta. 2011;32(12):1016–1025.

    Article  CAS  PubMed  Google Scholar 

  9. Lappas M, Riley C, Rice GE, Permezel M. Increased expression of ac-FoxO1 protein in prelabor fetal membranes overlying the cervix: possible role in human fetal membrane rupture. Reprod Sci. 2009;16(7):635–641.

    Article  CAS  PubMed  Google Scholar 

  10. Reti NG, Lappas M, Riley C, et al. Why do membranes rupture at term? Evidence of increased cellular apoptosis in the supracervical fetal membranes. Am J Obstet Gynecol. 2007;196(5):484 e481–e410.

    Article  CAS  Google Scholar 

  11. Moore RM, Mansour JM, Redline RW, Mercer BM, Moore JJ. The physiology of fetal membrane rupture: insight gained from the determination of physical properties. Placenta. 2006;27(11–12):1037–1051.

    Article  CAS  PubMed  Google Scholar 

  12. Malak TM, Bell SC. Structural characteristics of term human fetal membranes: a novel zone of extreme morphological alteration within the rupture site. Br J Obstet Gynaecol. 1994;101(5): 375–386.

    Article  CAS  PubMed  Google Scholar 

  13. McLaren J, Malak TM, Bell SC. Structural characteristics of term human fetal membranes prior to labour: identification of an area of altered morphology overlying the cervix. Hum Reprod. 1999; 14:237–241.

    Article  CAS  PubMed  Google Scholar 

  14. El Khwad M, Pandey V, Stetzer B, et al. Fetal membranes from term vaginal deliveries have a zone of weakness exhibiting characteristics of apoptosis and remodeling. J Soc Gynecol Investig. 2006;13(3):191–195.

    Article  PubMed  Google Scholar 

  15. El Khwad M, Stetzer B, Moore RM, et al. Term human fetal membranes have a weak zone overlying the lower uterine pole and cervix before onset of labor. Biol Reprod. 2005;72(3):720–726.

    Article  CAS  PubMed  Google Scholar 

  16. Thomson AJ, Telfer JF, Young A, et al. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Hum Reprod. 1999;14(1):229–236.

    Article  CAS  PubMed  Google Scholar 

  17. Bowen JM, Chamley L, Keelan JA, Mitchell MD. Cytokines of the placenta and extra-placental membranes: roles and regulation during human pregnancy and parturition. Placenta. 2002;23(4): 257–273.

    Article  CAS  PubMed  Google Scholar 

  18. Bowen JM, Chamley L, Mitchell MD, Keelan JA. Cytokines of the placenta and extra-placental membranes: biosynthesis, secretion and roles in establishment of pregnancy in women. Placenta. 2002;23(4):239–256.

    Article  CAS  PubMed  Google Scholar 

  19. Osman I, Young A, Ledingham MA, et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 2003;9(1):41–45.

    Article  CAS  PubMed  Google Scholar 

  20. Osman I, Young A, Jordan F, Greer IA, Norman JE. Leukocyte density and proinflammatory mediator expression in regional human fetal membranes and decidua before and during labor at term. J Soc Gynecol Investig. 2006;13(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  21. Gomez Lopez NY, Estrada Gutierrez G, Beltran Montoya J, Vadillo Ortega F. Assessment of a microarray of solid-phase antibodies to the study of chemokines secreted by the chorioamniotic membrane. Ginecol Obstet Mex. 2006;74(12):666–670.

    PubMed  Google Scholar 

  22. Gomez-Lopez N, Estrada-Gutierrez G, Jimenez-Zamudio L, Vega-Sanchez R, Vadillo-Ortega F. Fetal membranes exhibit selective leukocyte chemotaxic activity during human labor. J Reprod Immunol. 2009;80(1–2):122–131.

    Article  CAS  PubMed  Google Scholar 

  23. Gomez-Lopez N, Vadillo-Perez L, Nessim S, Olson DM, Vadillo-Ortega F. Choriodecidua and amnion exhibit selective leukocyte chemotaxis during term human labor. Am J Obstet Gynecol. 2011;204:364(4) e369–e316.

    Article  CAS  Google Scholar 

  24. Vadillo-Ortega F, Gonzalez-Avila G, Karchmer S, Cruz NM, Ayala-Ruiz A, Lama MS. Collagen metabolism in premature rupture of amniotic membranes. Obstet Gynecol. 1990;75(1):84–88.

    CAS  PubMed  Google Scholar 

  25. Redline RW, Faye-Petersen O, Heller D, Qureshi F, Savell V, Vogler C. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2003;6: 435–448.

    Article  PubMed  Google Scholar 

  26. Gomez-Lopez N, Vadillo-Perez L, Hernandez-Carbajal A, Godines-Enriquez M, Olson DM, Vadillo-Ortega F. Specific inflammatory microenvironments in the zones of the fetal membranes at term delivery. Am J Obstet Gynecol. 2011;205(3):235 e215–e224.

    Article  Google Scholar 

  27. Gomez-Lopez N, Vadillo-Ortega F, Estrada-Gutierrez G. Combined boyden-flow cytometry assay improves quantification and provides phenotypification of leukocyte chemotaxis. PLoS ONE. 2011;6(12): e28771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.

    Article  CAS  PubMed  Google Scholar 

  29. Kelly RW. Inflammatory mediators and parturition. Rev Reprod. 1996;1(2):89–96.

    Article  CAS  PubMed  Google Scholar 

  30. Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5(3): 266–271.

    Article  CAS  PubMed  Google Scholar 

  31. Gomez-Lopez N, Guilbert LJ, Olson DM. Invasion of the leukocytes into the fetal-maternal interface during pregnancy. J Leukoc Biol. 2010;88:625–633.

    Article  CAS  PubMed  Google Scholar 

  32. Gomez-Lopez N, Olson DM, Cubeiro-Arreola K, Vadillo-Ortega F. T cell recruitment and contribution to an inflammatory microenvironment in the choriodecidua during human labor. Reprod Sci. 2010;17:69A.

  33. Kumar D, Fung W, Moore RM, et al. Proinflammatory cytokines found in amniotic fluid induce collagen remodeling, apoptosis, and biophysical weakening of cultured human fetal membranes. Biol Reprod. 2006;74(1):29–34.

    Article  PubMed  CAS  Google Scholar 

  34. Vadillo OF, Gonzalez AG, Furth EE, et al. 92-kd type IV collagenase (matrix metalloproteinase-9) activity in human amniochorion increases with labor. Am J Pathol. 1995;146(1):148–156.

    Google Scholar 

  35. Xu P, Alfaidy N, Challis JR. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in human placenta and fetal membranes in relation to preterm and term labor. J Clin Endocrinol Metab. 2002;87(3):1353–1361.

    Article  CAS  PubMed  Google Scholar 

  36. Ito A, Mukaiyama A, Itoh Y, et al. Degradation of interleukin 1beta by matrix metalloproteinases. J Biol Chem. 1996;271(25): 14657–14660.

    Article  CAS  PubMed  Google Scholar 

  37. Casatella MN. The production of cytokines by polymorphonuclear neutrophils. Immunol Today. 1995;16(1):21–26.

    Article  Google Scholar 

  38. Osmers R, Rath W, Adelmann-Grill BC, et al. Origin of cervical collagenase during parturition. Am J Obstet Gynecol. 1992; 166(5):1455–1460.

    Article  CAS  PubMed  Google Scholar 

  39. Pan PY, Li Y, Li Q, et al. In situ recruitment of antigen-presenting cells by intratumoral GM-CSF gene delivery. Cancer Immunol Immunother. 2004;53(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  40. Tamassia N, Le Moigne V, Calzetti F, et al. The MyD88-independent pathway is not mobilized in human neutrophils stimulated via TLR4. J Immunol. 2007;178(11):7344–7356.

    Article  CAS  PubMed  Google Scholar 

  41. Seckinger P, Williamson K, Balavoine JF, et al. A urine inhibitor of interleukin 1 activity affects both interleukin 1 alpha and 1 beta but not tumor necrosis factor alpha. J Immunol. 1987; 139(5):1541–1545.

    CAS  PubMed  Google Scholar 

  42. Arend WP. Interleukin 1 receptor antagonist. A new member of the interleukin 1 family. J Clin Invest. 1991;88(5):1445–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood. 1991;77(8):1627–1652.

    Article  CAS  PubMed  Google Scholar 

  44. Witkin SS, Gravett MG, Haluska GJ, Novy MJ. Induction of interleukin-1 receptor antagonist in rhesus monkeys after intraam-niotic infection with group B streptococci or interleukin-1 infusion. Am J Obstet Gynecol. 1994;171(6):1668–1672.

    Article  CAS  PubMed  Google Scholar 

  45. Hurme M, Santtila S. IL-1 receptor antagonist (IL-1Ra) plasma levels are co-ordinately regulated by both IL-1Ra and IL-1beta genes. Eur J Immunol. 1998;28(8):2598–2602.

    Article  CAS  PubMed  Google Scholar 

  46. Genc MR, Gerber S, Nesin M, Witkin SS. Polymorphism in the interleukin-1 gene complex and spontaneous preterm delivery. Am J Obstet Gynecol. 2002;187(1):157–163.

    Article  CAS  PubMed  Google Scholar 

  47. Romero R, Sepulveda W, Mazor M, et al. The natural interleukin-1 receptor antagonist in term and preterm parturition. Am J Obstet Gynecol. 1992;167(4 pt 1):863–872.

    Article  CAS  PubMed  Google Scholar 

  48. Romero R, Gomez R, Galasso M, et al. The natural interleukin-1 receptor antagonist in the fetal, maternal, and amniotic fluid compartments: the effect of gestational age, fetal gender, and intrauterine infection. Am J Obstet Gynecol. 1994; 171(4):912–921.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nardhy Gomez-Lopez PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez-Lopez, N., Hernandez-Santiago, S., Lobb, A.P. et al. Normal and Premature Rupture of Fetal Membranes at Term Delivery Differ in Regional Chemotactic Activity and Related Chemokine/Cytokine Production. Reprod. Sci. 20, 276–284 (2013). https://doi.org/10.1177/1933719112452473

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112452473

Keywords

Navigation