Skip to main content
Log in

The Electrical Activities of the Uterus During Pregnancy

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

In contrast to the current state of knowledge of cardiac and of gastrointestinal electrophysiology, our current knowledge of the physiology of the uterus during pregnancy is still very rudimentary. Despite seminal work performed in the past decades, there are still significant areas that we know little about. In this review, some of these areas are explored. For example, although many studies have tried to find the site of the uterus pacemaker, such a site has not yet been found and its mechanism and location remain, to date, a mystery. Similarly, there is much confusion as to the mechanism of propagation of the electrical impulse. Although the existence of gap junctions, connecting neighboring myometrial cells to each other, have been known since 1977, alternative or additional mechanisms are being suggested such as the potential existence of a network of interstitial cells, similar to the one that is functioning in the gut, or the involvement of stretch receptors to synchronize activity and contraction. In recent years, high-resolution studies have been introduced enabling detailed analysis of the location and spatial patterns of propagation. This work is being developed at the in-vitro level in isolated tissues, in the whole organ and in several animal species. Most recently, a surge in new technology enabling high fidelity and high resolution recording from the human uterus through the abdominal wall are being explored which could ultimately lead to new diagnostic tools and a clearer understanding of the physiology of pregnancies and (premature) labor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mines GR. On circulating excitation on heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can. 1914;4:43–53.

    Google Scholar 

  2. Bassingthwaighte J, Hunter P, Noble D. The cardiac physiome; perspectives for the future. Exp Physiol. 2009;94(5):597–605.

    Article  CAS  PubMed  Google Scholar 

  3. Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 2011;91(1):265–325.

    Article  PubMed  Google Scholar 

  4. Shenasa M, Hindricks G, Borggrefe M, Breithardt G. Cardiac Mapping. 3rd ed. Wiley-Blackwell; 2009.

  5. Lammers WJEP, Ver Donck L, Stephen B, Smets D, Schuurkes JAJ. Origin and propagation of the slow wave in the canine stomach: outline of the gastric conduction system. Am J Physiol Gastrointest Liver Physiol. 2009;296(6):G1200–G1210.

    Article  CAS  PubMed  Google Scholar 

  6. O’Grady G, Du P, Cheng LK, et al. The origin and propagation of human gastric slow wave activity defined by high resolution mapping. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G585–G592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lammers WJEP, Ver Donck L, Stephen B, Smets D, Schuurkes JAJ. Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology. 2008;135(5):1601–1611.

    Article  PubMed  Google Scholar 

  8. Lammers WJ, Stephen BS, Karam SM. Functional reentry and circus movement arrhythmia in the small intestine of the normal and diabetic rat. Am J Physiol Gastrointest Liver Physiol. 2012;302(7):G684–G689.

    Article  CAS  PubMed  Google Scholar 

  9. Bozler E. Physiological evidence for the syncytial character of smooth muscle. Science. 1937;86(2238):476.

    Article  CAS  PubMed  Google Scholar 

  10. Csapo AI. Smooth muscle as a contractile unit. Physiol Rev. 1962;42(suppl 5):7–33.

    Google Scholar 

  11. Kao CY. Long-term observations of spontaneous electrical activity of the uterine smooth muscle. Am J Physiol. 1959;196(2):343–350.

    Article  CAS  PubMed  Google Scholar 

  12. Merkatz IR. Preface. Am J Perinatol. 1989;6(2):103–104.

    Google Scholar 

  13. Marshall JM. Regulation of activity in uterine smooth muscle. Physiol Rev. 1962;42(5):213–227.

    Google Scholar 

  14. Lammers WJEP, Arafat K, El-Kays A, El-Sharkawy TY. Spatial and temporal variations in local spike propagation in the myome-trium of the 17-day pregnant rat. Am J Physiol. 1994;267(5 Pt 1):C1210–C1223.

    Article  CAS  PubMed  Google Scholar 

  15. Eswaran H, Govindan RB, Furdea A, Murphy P, Lowery CL, Pre-issl HT. Extraction, quantification and characterization of uterine magnetomyographic activity—a proof of concept case study. Eur J Obstet Gynecol Reprod Biol. 2009;144(suppl 1):S96–S100.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rabotti C, Mischi M, Oei SG, Bergmans JW. Noninvasive estimation of the electrohysterographic action-potential conduction velocity. IEEE Trans Biomed Eng. 2010;57(9):2178–2187.

    Article  PubMed  Google Scholar 

  17. Marshall JM. Effects of oestrogen and progesterone on single uterine muscle fibres in the rat. Am J Physiol. 1959;197:935–942.

    Article  CAS  PubMed  Google Scholar 

  18. Anderson NC. Physiological basis of myometrial function. Semin Perinatol. 1978;2(3):211–222.

    PubMed  Google Scholar 

  19. Fuchs AR, Poblete VJ. Oxytocin and uterine function in pregnant and parturient rats. Biol Reprod. 1970;2(3):387–400.

    Article  CAS  PubMed  Google Scholar 

  20. Lodge S, Sproat JE. Resting membrane potentials of pacemaker and non pacemaker areas in rat uterus. Life Sci. 1981;28(20):2251–2256.

    Article  CAS  PubMed  Google Scholar 

  21. Parkington HC, Harding R, Sigger JN. Co-ordination of electrical activity in the myometrium of pregnant ewes. J Reprod Fert. 1988;82(2):697–705.

    Article  CAS  Google Scholar 

  22. Caldeyro-Barcia R, Alvarez H, Reynolds SRM. A better understanding of uterine contractility through simultaneous recording with an internal and seven channel external method. Surg Gynecol Obstet. 1950;91(6):641–650.

    Google Scholar 

  23. Fuchs AR. Uterine activity in late pregnancy and during parturition in the rat. Biol Reprod 1969;1(4):344–353.

    Article  CAS  PubMed  Google Scholar 

  24. Crane LH, Martin L. In vivo myometrial activity during early pregnancy and pseudo-pregnancy in the rat. Reprod Fertil Dev. 1991;3(3):233–244.

    Article  CAS  PubMed  Google Scholar 

  25. Wolfs G, Rottinghuis H. Electrical and mechanical activity of the human uterus during labour. Arch Gynak. 1970;208(4):373–385.

    Article  CAS  Google Scholar 

  26. Wolfs G, van Leeuwen M, Rottinghuis H, Boeles JThF. An electromyographic study of the human uterus during labor. Obstet Gynecol. 1971;37(2):241–246.

    CAS  PubMed  Google Scholar 

  27. Duquette RA, Shmygol A, Vaillant C, et al. Vimentin-positive, c-KIT negative interstitial cells in human and rat uterus: a role in pacemaking? Biol Reprod. 2005;72(2):276–283.

    Article  CAS  PubMed  Google Scholar 

  28. Hanani M, Brading AF. Electrical coupling in smooth muscles. Is it universal? J Basic Clin Physiol Pharm. 2000;11(4):321–330.

    Article  CAS  Google Scholar 

  29. Kelly KA, Code CF. Canine gastric pacemaker. Am J Physiol. 1971;220(1):112–118.

    Article  CAS  PubMed  Google Scholar 

  30. Wray S, Kupittayanant S, Shmygol A, Smith RD, Burdyga T. The physiological basis of uterine contractility: a short review. Uterine Contractility Symposium. Exp Physiol. 2001;86(2):239–246.

    Article  CAS  PubMed  Google Scholar 

  31. Buhimshi C. Spatiotemporal electromyography during human labor to monitor propagation of the uterine contraction wave and diagnose dystocia. Am J Obstetr Gynaecol. 2009;200(1):1–3.

    Article  Google Scholar 

  32. Miller SM, Garfield RE, Daniel EE. Improved propagation in myometrium associated with gap junctions during parturition. Am J Physiol. 1989;256(1 Pt 1):C130–C141.

    Article  CAS  PubMed  Google Scholar 

  33. Garfield RE, D Merret, AK Grover. Gap junction formation and regulation in myometrium. Am J Physiol. 1980;239(5):C217–C228.

    Article  CAS  PubMed  Google Scholar 

  34. Garfield RE, Blennerhasset MG, Miller SM. Control of myometrial contractility: role and regulation of gap junctions. Oxf Rev Reprod Biol. 1988;10:436–490.

    CAS  PubMed  Google Scholar 

  35. Garfield RE, Hertzberg EL. Cell-to-cell coupling in the myometrium: Emil Bozler’s prediction. In: Sperelakis N, Wood JD eds. Frontiers in Smooth Muscle Research. 1990:673–681.

  36. Sims SM, Daniel EE, Garfield RE. Improved electrical coupling in uterine smooth muscle is associated with increased numbers of gap junctions at parturition. J Gen Physiol. 1982;80(3):353–375.

    Article  CAS  PubMed  Google Scholar 

  37. Parkington HC. Some properties of the circular myometrium of the sheep throughout pregnancy and during labour. J Physiol. 1985;359:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanborn BM. Ion channels and the control of myometrial electrical activity. Semin Perinatol. 1995;19(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  39. Lammers WJEP, Stephen B. Origin and propagation of individual slow waves along the intact feline small intestine. Exp Physiol. 2008;93(3):334–346.

    Article  PubMed  Google Scholar 

  40. Specht PC. Phase-plane analysis of action potentials in uterine smooth muscle. Pflugers Arch. 1976;367(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  41. Popescu LM, Vidulescu C, Curici A, et al. Imatinib inhibits spontaneous rhythmic contractions of human uterus and intestine. Eur J Pharmacol. 2006;546(1–3):177–181.

    Article  CAS  PubMed  Google Scholar 

  42. Popescu LM, Ciontea SM, Cretoiu D. Interstitial Cajal-like cells in human uterus and fallopian tube. Ann NY Acad Sci. 2007;1101:139–165.

    Article  CAS  PubMed  Google Scholar 

  43. Allix S, Reyes-Gomez E, Aubin-Houzelstein G, et al. Uterine contractions depend on KIT-positive interstitial cells in the mouse: genetic and pharmacological evidence. Biol Reprod. 2008;79(3):510–517.

    Article  CAS  PubMed  Google Scholar 

  44. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995;373(6512):347–349.

    Article  CAS  Google Scholar 

  45. Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996;111(2):492–515.

    Article  CAS  PubMed  Google Scholar 

  46. Ordög T, Takayama I, Cheung WKT, Ward SM, Sanders KM. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes. 2000;49(10):1731–1739.

    Article  PubMed  Google Scholar 

  47. Lee HT, Hennig GW, Fleming NW, et al. The mechanism and spread of pacemaker activity through myenteric interstitial cells of cajal in human small intestine. Gastroenterology. 2007;132(5):1852–1865.

    Article  CAS  PubMed  Google Scholar 

  48. Hutchings G, Williams O, Cretoiu D, Ciontea S. Myometrial interstitial cells and the coordination of myometrial contractility. J Cell Mol Med. 2009;13:4268–4282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lammers WJEP. Circular excitations and reentry in the pregnant uterus. Pflügers Arch (Eur J Physiol). 1997;433(3):287–293.

    Article  CAS  Google Scholar 

  50. Lammers WJEP, Hamid R. The initiation, continuation and termination of episodes of circus movements in the pregnant myome-trium of the rat. Am J Obstet Gynecol. 1998;179(6 Pt 1):1515–1526.

    Article  CAS  PubMed  Google Scholar 

  51. Lammers WJEP, Mirghani H, Stephen B, et al. Patterns of electrical propagation in the intact pregnant guinea-pig uterus. Am J Physiol Regul Integr Comp Physiol. 2008;294(3):R919–R928.

    Article  CAS  PubMed  Google Scholar 

  52. Coleman HA, Parkington HC. Propagation of electrical and mechanical activity in uterine smooth muscle: a functional role for stretch-sensitive channels. Jpn J Pharmacol. 1992;58(suppl 2):369P.

    PubMed  Google Scholar 

  53. Csapo A, Lloyd-Jacob M. Effect of uterine volume on parturition. Am J Obst Gynecol. 1963;85:806–812.

    Article  CAS  Google Scholar 

  54. Csapo A, Takeda H, Wood C. Volume and activity of the parturient rabbit uterus. Am J Obst Gynecol. 1963;85:813–818.

    Article  CAS  Google Scholar 

  55. Csapo A, Jaffin H, Kerenyi T, Lipman J, Wood C. Volume and activity of the pregnant human uterus. Am J Obst Gynecol. 1963;85:819–835.

    Article  CAS  Google Scholar 

  56. Csapo A. The diagnostic significance of the intrauterine pressure. Part I. Obstetr Gynecol Survey. 1970;25(5):403–435.

    Article  CAS  Google Scholar 

  57. Csapo A. The diagnostic significance of the intrauterine pressure. Part II. Obstetr Gynecol Survey. 1970;25(6):515–543.

    Article  CAS  Google Scholar 

  58. Takeda H. Generation and propagation of uterine activity in situ. Fertil Steril. 1965;16:113–119.

    Article  CAS  PubMed  Google Scholar 

  59. Young RC, Goloman G. Mechanotransduction in rat myometrium: coordination of contractions of electrically and chemically isolated tissues. Reprod Sci. 2011;18(1):64–69.

    Article  PubMed  Google Scholar 

  60. Aslanidi O, Atia J, Benson AP, et al. Towards a computational reconstruction of the electrodynamics of premature and full term human labour. Prog Biophys Mol Biol. 2011;107(1):183–192.

    Article  CAS  PubMed  Google Scholar 

  61. Bode O. Das Elektrohysterogramm. Arch Gyn Obst. 1931;146:123–128.

    Article  Google Scholar 

  62. Clason S. Versuche mit obstetrischer Elektrographie. Acta Obst et Gynec Scandinav. 1934;14:131–142.

    Article  Google Scholar 

  63. Dill LV, Maiden RM. The electrical potentials of the human uterus in labor. Am J Obstet Gynecol. 1946;52(5):735–745.

    Article  CAS  PubMed  Google Scholar 

  64. Dill LV, Maiden RM. Further studies on the electrical potentials of the human uterus in labor. Am J Obstet Gynecol. 1948;56(2):213–225.

    Article  CAS  PubMed  Google Scholar 

  65. Steer CM, Hertsch GJ. Electrical activity of the human uterus in labor. The electrohysterograph. Am J Obstet Gynecol. 1950;59(1):25–40.

    Article  CAS  PubMed  Google Scholar 

  66. Mansour S, Duchene J, Germain G, Marque C. Uterine EMG. Experimental and mathematical determination of the relationship between internal and external recordings. IEEE EMBS. 1991;13:485–486.

    Google Scholar 

  67. Hon EHG, Davis CD. Cutaneous and uterine electrical potentials in labor—an experiment. Obstet Gynecol. 1958;12(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  68. Devedeux D, Marque C, Mansour S, Germain G, Duchene J. Uterine electromyography; a critical review. Am J Obstet Gynecol. 1993;169(6):1636–1653.

    Article  CAS  PubMed  Google Scholar 

  69. Buhimshi C, Garfield RE. Uterine contractility as assessed by abdominal surface recording of electromyographic activity in rats during pregnancy. Am J Obstet Gynecol. 1996;174(2):744–753.

    Article  Google Scholar 

  70. Buhimshi C, Garfield RE. Uterine activity during pregnancy and labor assessed by simultaneous recordings from the myometrium and abdominal surface in the rat. Am J Obstet Gynecol. 1998;178(4):811–822.

    Article  Google Scholar 

  71. Buhimshi C, Boyle MB, Garfield RE. Electrical activity of the human uterus during pregnancy as recorded from the abdominal surface. Obstet Gynecol. 1997;90(1):102–111.

    Article  Google Scholar 

  72. Maner WL, Garfield RE, Maul H, Olson G, Saade G. Predicting term and preterm delivery with transabdominal uterine electromyography. Obstet Gynecol. 2003;101(6):1254–1260.

    PubMed  Google Scholar 

  73. Most O, Langer O, Kerner R, David GB, Calderon I. Can myometrial electrical activity identify patients in preterm labor? Am J Obstet Gynecol. 2008;199(4):378.e1–378.e6–378.

    Article  Google Scholar 

  74. Schlembach D, Maner WL, Garfield RE, Maul H. Monitoring the progress of pregnancy and labor using electromyography. Eur J Obstet Gynecol Reprod Biol. 2009;144(suppl 1):S33–S39.

    Article  PubMed  Google Scholar 

  75. Jacod BC, Graatsma EM, Van Hagen E, Visser GH. A validation of electrohysterography for uterine activity monitoring during labour. J Matern Fetal Neonatal Med. 2010;23(1):17–22.

    Article  PubMed  Google Scholar 

  76. Lucovnik M, Kuon RJ, Chambliss LR, et al. Use of uterine electromyography to diagnose term and preterm labor. Acta Obstet Gynecol Scand. 2011;90(2):150–157.

    Article  PubMed  Google Scholar 

  77. Lucovnik M, Maner WL, Chambliss LR, et al. Noninvasiv uterine electromyography for prediction of preterm delivery. Am J Obstet Gynecol. 2011;204(3):228.e1–e10.

    Article  Google Scholar 

  78. Jiang W, Li G, Lin L. Uterine electromyogram topography to represent synchronization of uterine contractions. Int J Gynaecol Obstet. 2007;97(2):120–124.

    Article  PubMed  Google Scholar 

  79. Euliano TY, Marossero D, Nguyen MT, Euliano NR, Principe J, Edwards RK. Spatiotemporal electrohysterography patterns in normal and arrested labor. Am J Obstet Gynecol. 2009;200(1):54.e1–e7.

    Article  Google Scholar 

  80. Rabotti C, Oei SG, van’t Hooft J, Mischi M. Electrohysterographic propagation velocity for preterm delivery prediction. Am J Obstet Gynecol. 2011;205(6):e9–e10.

    Article  PubMed  Google Scholar 

  81. Eswaran H, Preissl H, Wilson JD, Murphy P, Lowery CL. Prediction of labor in term and preterm pregnancies using non-invasive magnetomyographic recordings of uterine contractions. Am J Obstet Gynecol. 2004;190(6):1598–1603.

    Article  PubMed  Google Scholar 

  82. Irimia A, Richards WO, Bradshaw LA. Magnetogastrographic detection of gastric electrical response activity in humans. Phys Med Biol. 2006;51(5):1347–1360.

    Article  PubMed  Google Scholar 

  83. Ramon C, Preissl H, Murphy P, Wilson JD, Lowery C, Eswaran H. Synchronization analysis of the uterine magnetic activity during contractions. Biomed Eng Online. 2005;4:55.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lowery CL, Govindan RB, Preissl H, Murphy P, Eswaran H. Fetal neurological assessment using noninvasive magnetoence-phalography. Clin Perinatol. 2009;36(3):701–709. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Eswaran H, Govindan RB, Haddad NI, et al. Spectral power differences in the brain activity of growth-restricted and normal fetuses [published online ahead of print October 5, 2011]. Early Hum Dev. 2011.

  86. Andersen HF, Barclay ML. A computer model of uterine contractions based on discrete contractile elements. Obstet Gynecol. 1995;86(1):108–111.

    Article  CAS  PubMed  Google Scholar 

  87. Young RC. A computer model of uterine contractions based on action potential propagation and intercellular calcium waves. Obstet Gynecol. 1997;89(4):604–608.

    Article  CAS  PubMed  Google Scholar 

  88. Rihana S, Lefrancois E, Marque C. A two dimension model of the uterine electrical wave propagation. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:1109–1112.

    CAS  Google Scholar 

  89. Rihana S, Terrien J, Germain G, Marque C. Mathematical modeling of electrical activity of uterine muscle cells. Med Biol Eng Comput. 2009;47(6):665–675.

    Article  PubMed  Google Scholar 

  90. Taggart MJ, Blanks A, Kharche S, Holden A, Wang B, Zhang H. Towards understanding the myometrial physiome: approaches for the construction of a virtual physiological uterus. BMC Pregnancy Childbirth. 2007;7(suppl 1):S3.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tong WC, Choi CY, Karche S, Holden AV, Zhang H, Taggart MJ. A computational model of the ionic currents, Ca2+ dynamics and action potentials underlying contraction of isolated uterine smooth muscle. PLoS One. 2011;6(4):e18685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Parkington HC, Coleman HA. Excitability in uterine smooth muscle. In: Smith R, ed. The Endocrinology of Parturition, Basic Science and Clinical Application. Vol 27. Basel, Karger: Front Horm Res; 2001:179–200.

    Google Scholar 

  93. Mitchell BF, Taggart MJ. Are animal models relevant to key aspects of human parturition? Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R525–R545.

    Article  CAS  PubMed  Google Scholar 

  94. Smith R. Parturition. N Engl J Med. 2007;356(3):271–283.

    Article  CAS  PubMed  Google Scholar 

  95. Osa T, Katase T. Physiological comparison of the longitudinal and circular muscles of the pregnant rat uterus. Jpn J Physiol. 1975;25(2):153–164.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim J. E. P. Lammers MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lammers, W.J.E.P. The Electrical Activities of the Uterus During Pregnancy. Reprod. Sci. 20, 182–189 (2013). https://doi.org/10.1177/1933719112446082

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112446082

Keywords

Navigation