Skip to main content
Log in

Complex Actions of Estradiol-3-Sulfate in Late Gestation Fetal Brain

  • Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The most abundant form of estrogen circulating in fetal plasma is sulfo-conjugated estrogen; for example, estradiol-3-sulfate (E2SO4) is more highly abundant than estradiol (E2). The present study investigated the ontogeny of the deconjugating (steroid sulfatase [STS]) and conjugating (estrogen sulfotransferase [STF]) enzymes in ovine fetal brain and tested the hypothesis that treatment with E2SO4 would alter the expression of one or both enzymes. Steroid sulfatase was more highly expressed than STF, and both changed as a function of gestational age. Estradiol-3-sulfate infused intracerebroventricularly (icv) significantly increased plasma adrenocorticotropic hormone (ACTH) and cortisol concentrations. Plasma E2 and E2SO4 were increased, and brain expression of estrogen receptor α was decreased. The proteins STS and STF were up- and downregulated, respectively. Pituitary proopiomelanocortin (POMC) and follicle-stimulating hormone (FSH) and hypothalamic corticotrophin-releasing hormone (CRH) messenger RNA (mRNA) was decreased. We conclude that E2SO4 has complex actions on the fetal brain, which might involve deconjugation by STS, but that the net result of direct E2SO4 icv infusion is more complex than can be accounted for by infusion of E2 alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Yu HK, Cabalum T, Jansen CA, Buster JE, Nathanielsz PW. Androstenedione, testosterone, and estradiol concentrations in fetal and maternal plasma in late pregnancy in the sheep. Endocrinology. 1983;113(6):2216–2220.

    Article  CAS  PubMed  Google Scholar 

  2. Purinton SC, Wood CE. Oestrogen augments the fetal ovine hypothalamus-pituitary-adrenal axis in response to hypotension. J Physiol. 2002;544(pt 3):919–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saoud CJ, Wood CE. Modulation of ovine fetal adrenocorticotropin secretion by androstenedione and 17beta-estradiol. Am J Physiol. 1997;272(4 pt 2):R1128–R1134.

    CAS  PubMed  Google Scholar 

  4. Schaub CE, Gersting JA, Keller-Wood M, Wood CE. Development of ER-alpha and ER-beta expression in the developing ovine brain and pituitary. Gene Expr Patterns. 2008;8(6):457–463.

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell BF, Lye SJ, Lukash L, Challis JRG. Androstenedione metabolism in the late gestation sheep fetus. Endocrinology. 1986;118(1):63–68.

    Article  CAS  PubMed  Google Scholar 

  6. Pierrepoint CG, Anderson AB, Harvey G, Turnbull AC, Griffiths K. The conversion in vitro of C19-steroids to oestrogen sulphates by the sheep placenta. J Endocrinol. 1971;50(3):537–538.

    Article  CAS  PubMed  Google Scholar 

  7. Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997;138(3):863–870.

    Article  CAS  PubMed  Google Scholar 

  8. Payne AH, Lawrence CC, Foster DL, Jaffe RB. Intranuclear binding of 17b-estradiol and estrone in female ovine pituitaries following incubation with estrone sulfate. J Biol Chem. 1973;248:1598–1602.

    CAS  PubMed  Google Scholar 

  9. Wood CE, Gridley KE, Keller-Wood M. Biological activity of 17beta-estradiol-3-sulfate in ovine fetal plasma and uptake in fetal brain. Endocrinology. 2003;144(2):599–604.

    Article  CAS  PubMed  Google Scholar 

  10. Carnegie JA, Robertson HA. Conjugated and unconjugated estrogens in fetal and maternal fluids of the pregnant ewe: a possible role for estrone sulfate during early pregnancy. Biol Reprod. 1978;19(1):202–211.

    Article  CAS  PubMed  Google Scholar 

  11. Tsang CPW. Changes in plasma levels of estrone sulfate and estrone in the pregnant ewe around parturition. Steroids. 1974;23(6):855–868.

    Article  CAS  PubMed  Google Scholar 

  12. Hobkirk R. Steroid sulfotransferases and steroid sulfate sulfatases: characteristics and biological roles. Can J Biochem Cell Biol. 1985;63(11):1127–44.

    Article  CAS  PubMed  Google Scholar 

  13. Purinton SC, Newman H, Castro MI, Wood CE. Ontogeny of estrogen sulfatase activity in ovine fetal hypothalamus, hippocampus, and brain stem. Am J Physiol. 1999;276(6):R1647–R1652.

    CAS  PubMed  Google Scholar 

  14. Purinton SC, Wood CE. Ovine fetal estrogen sulfotransferase in brain regions important for hypothalamus-pituitary-adrenal axis control. Neuroendocrinology. 2000;71(4):237–242.

    Article  CAS  PubMed  Google Scholar 

  15. Guiding principles for research involving animals and human beings. Am J Physiol Regul Integr Comp Physiol. 2002;283(2):R281–R283.

  16. Wood CE. Control of parturition in ruminants. J Reprod Fertil Suppl. 1999;54:115–126.

    CAS  PubMed  Google Scholar 

  17. Gersting JA, Schaub CE, Wood CE. Development of prostaglandin endoperoxide synthase expression in the ovine fetal central nervous system and pituitary. Gene Expr Patterns. 2009;9(8):603–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keller-Wood M, Powers MJ, Gersting JA, Ali N, Wood CE. Genomic analysis of neuroendocrine development of fetal brain-pituitary-adrenal axis in late gestation. Physiol Genomics. 2006;24(3):218–224.

    Article  CAS  PubMed  Google Scholar 

  19. Schaub CE, Keller-Wood M, Wood CE. Blockade of estrogen receptors decreases CNS and pituitary prostaglandin synthase expression in fetal sheep. Neuroendocrinology. 2008;87(2):121–128.

    Article  CAS  PubMed  Google Scholar 

  20. Wood CE, Cudd TA, Kane C, Engelke K. Fetal ACTH and blood pressure responses to thromboxane mimetic U46619. Am J Physiol. 1993;265(4 pt 2):R858–R862.

    CAS  PubMed  Google Scholar 

  21. Myers DA, Bell PA, Hyatt K, Mlynarczyk M, Ducsay CA. Long-term hypoxia enhances proopiomelanocortin processing in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1178–R1184.

    Article  CAS  PubMed  Google Scholar 

  22. Wood CE, Giroux D. Central nervous system prostaglandin endoperoxide synthase-1 and -2 responses to oestradiol and cerebral hypoperfusion in late-gestation fetal sheep. J Physiol. 2003;549(pt 2):573–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wood CE. Cerebral hypoperfusion increases estrogen receptor abundance in the ovine fetal brain and pituitary. Neuroendocrinology. 2008;87(4):216–222.

    Article  CAS  PubMed  Google Scholar 

  24. Winer BJ. Statistical Principles in Experimental Design.2nd ed. New York, NY: McGraw-Hill; 1971.

    Google Scholar 

  25. Saoud CJ, Wood CE. Developmental changes and molecular weight of immunoreactive glucocorticoid receptor protein in the ovine fetal hypothalamus and pituitary. Biochem Biophys Res Commun. 1996;229(3):916–921.

    Article  CAS  PubMed  Google Scholar 

  26. Zar JH. Biostatistical Analysis.2nd ed. Englewood Cliffs, NJ: Prentice-Hall; 1984.

    Google Scholar 

  27. Roselli CE, Stormshak F. Prenatal programming of sexual partner preference: the ram model. J Neuroendocrinol. 2009;21(4):359–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gong H, Jarzynka MJ, Cole TJ, et al. Glucocorticoids antagonize estrogens by glucocorticoid receptor-mediated activation of estrogen sulfotransferase. Cancer Res. 2008;68(18):7386–7393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prost O, Adessi GL. Estrone and dehydroepiandrosterone sulfatase activities in normal and pathological human endometrium biopsies. J Clin Endocrinol Metab. 1983l;56(4):653–661.

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki T, Hirato K, Yanaihara T, et al. Purification and properties of steroid sulfatase from human placenta. Endocrinol Jpn. 1992;39(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  31. Frese MA, Schulz S, Dierks T. Arylsulfatase G, a novel lysosomal sulfatase. J Biol Chem. 200825;283(17):11388–11395.

  32. Baulieu EE, Robel P, Schumacher M. Neurosteroids: beginning of the story. Int Rev Neurobiol. 2001;46:1–32.

    Article  CAS  PubMed  Google Scholar 

  33. Petrovic M, Sedlacek M, Cais O, Horak M, Chodounska H, Vyklicky L Jr. Pregnenolone sulfate modulation of N-methyl-D-aspartate receptors is phosphorylation dependent. Neuroscience. 2009;160(3):616–628.

    Article  CAS  PubMed  Google Scholar 

  34. Schumacher M, Liere P, Akwa Y, et al. Pregnenolone sulfate in the brain: a controversial neurosteroid. Neurochem Int. 2008;52(4–5):522–540.

    Article  CAS  PubMed  Google Scholar 

  35. Cudd TA, Castro MI, Wood CE. Content, in vivo release, and bioactivity of fetal pulmonary immunoreactive adrenocorticotropin. Am J Physiol. 1993;265(4 pt 1):E667–E672.

    CAS  PubMed  Google Scholar 

  36. Cudd TA, Wood CE. Secretion and clearance of immunoreactive ACTH by fetal lung. Am J Physiol. 1995;268(5 pt 1):E845–E848.

    CAS  PubMed  Google Scholar 

  37. Wood CE, Barkoe D, The A, et al. Fetal pulmonary immunoreactive adrenocorticotropin: molecular weight and cellular localization. Regul Pept. 1998;73(3):191–196.

    Article  CAS  PubMed  Google Scholar 

  38. Ali NS, Keller-Wood M, Wood CE. Ontogenetic changes in the extra-pituitary expression of pro-opiomelanocortin in the developing ovine fetus. Peptides. 2005;26(2):301–306.

    Article  CAS  PubMed  Google Scholar 

  39. Figueiredo HF, Ulrich-Lai YM, Choi DC, Herman JP. Estrogen potentiates adrenocortical responses to stress in female rats. Am J Physiol Endocrinol Metab. 2007;292(4):E1173–E1182.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Wood PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winikor, J., Schlaerth, C., Rabaglino, M.B. et al. Complex Actions of Estradiol-3-Sulfate in Late Gestation Fetal Brain. Reprod. Sci. 18, 654–665 (2011). https://doi.org/10.1177/1933719110395400

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110395400

Keywords

Navigation