Skip to main content
Log in

Chronic Hypoxia Impairs Cytochrome Oxidase Activity Via Oxidative Stress in Selected Fetal Guinea Pig Organs

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We hypothesized that chronic hypoxia disrupts mitochondrial function via oxidative stress in fetal organs. Pregnant guinea pig sows were exposed to either normoxia or hypoxia (10.5% O2, 14 days) in the presence or absence of the antioxidant, N-acetylcysteine (NAC). Near-term anesthetized fetuses were delivered via hysterotomy, and fetal livers, hearts, lungs, and forebrains harvested. We quantified the effects of chronic hypoxia on cytochrome oxidase (CCO) activity and 2 factors known to regulate CCO activity: malondialdehyde (MDA) and CCO subunit 4 (COX4). Hypoxia increased the MDA levels in fetal liver, heart, and lung with a corresponding reduction in CCO activity, prevented by prenatal NAC. The COX4 expression paralleled CCO activity in fetal liver and lung, but was unaltered in fetal hearts due to hypoxia. Hypoxia reduced the brain COX4 expression despite having no effect on CCO activity. This study identifies the mitochondrion as an important target site in tissue-specific oxidative stress for the induction of fetal hypoxic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myatt L. Placental adaptive responses and fetal programming. J Physiol. 2006;572(pt 1):25–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kingdom JC, Kaufmann P. Oxygen and placental villous development: origins of fetal hypoxia. Placenta. 1997;18(8):613–621.

    Article  CAS  PubMed  Google Scholar 

  3. Giaccia AJ, Simon MC, Johnson R. The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev. 2004;18(18):2183–2194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gilbert WM, Danielsen B. Pregnancy outcomes associated with intrauterine growth restriction. Am J Obstet Gynecol. 2003; 188(6):1596–1599; discussion 1599–1601.

    Article  PubMed  Google Scholar 

  5. Kramer MS, Séguin L, Lydon J, Goulet L. Socio-economic disparities in pregnancy outcome: why do the poor fare so poorly? Paediatr Perinat Epidemiol. 2000;14(3):194–210.

    Article  CAS  PubMed  Google Scholar 

  6. Julian CG. High altitude during pregnancy. Clin Chest Med. 2011; 32(1):21–31, vii.

    Article  PubMed  Google Scholar 

  7. Barker DJ. The fetal and infant origins of adult disease. BMJ. 1990;301(6761):1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guzy RD, Hoyos B, Robin E, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401–408.

    Article  CAS  PubMed  Google Scholar 

  9. Fisher AB. Activation of endothelial NADPH oxidase as the source of a reactive oxygen species in lung ischemia. Chest. 1999;116(1 suppl):25S-26S.

    Article  CAS  PubMed  Google Scholar 

  10. Killilea DW, Hester R, Balczon R, Babal P, Gillespie MN. Free radical production in hypoxic pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2000;279(2): L408–L412.

    Article  CAS  PubMed  Google Scholar 

  11. Buonocore G, Perrone S, Longini M, Terzuoli L, Bracci R. Total hydroperoxide and advanced oxidation protein products in preterm hypoxic babies. Pediatr Res. 2000;47(2):221–224.

    Article  CAS  PubMed  Google Scholar 

  12. Raza H, Prabu SK, John A, Avadhani NG. Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats. Int J Mol Sci. 2011;12(5):3133–3147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  14. Bedard K, Heinz KK. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.

    Article  CAS  PubMed  Google Scholar 

  15. Thompson L, Dong Y, Evans L. Chronic hypoxia increases inducible NOS-derived nitric oxide in fetal guinea pig hearts. Pediatr Res. 2009;65(2):188–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Evans LSC, Liu H, Pinkas GA, Thompson LP. Chronic hypoxia increases peroxynitrite, MMP9 expression, and collagen accumulation in fetal guinea pig hearts. Pediatr Res. 2012;71(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  17. Dong Y, Yu Z, Sun Y, et al. Chronic fetal hypoxia produces selective brain injury associated with altered nitric oxide synthases. Am J Obstet Gynecol. 2011;204(3):254.e16–e28.

    Article  CAS  Google Scholar 

  18. Aon M, Cortassa S, O’Rourke B. Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta. 2010;1797(6–7): 865–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Demin OV, Kholodenko BN, Skulachev VP. A model of O2-generation in the complex III of the electron transport chain. Mol Cell Biochem. 1998;184(1–2):21–33.

    Article  CAS  PubMed  Google Scholar 

  20. Miwa S, Brand MD. Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem Soc Trans. 2003;31(pt 6):1300–1301.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278(38):36027–36031.

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Petersen DR, Schenker S, Henderson GI. Formation of malondialdehyde adducts in livers of rats exposed to ethanol: role in ethanol-mediated inhibition of cytochrome c oxidase. Alcohol Clin Exp Res. 2000;24(4):544–552.

    Article  CAS  PubMed  Google Scholar 

  23. Behn C, Araneda OF, Llanos AJ, Celedón G, González G. Hypoxia-related lipid peroxidation: evidences, implications and approaches. Respir Physiol Neurobiol. 2007;158(2–3): 143–150.

    Article  CAS  PubMed  Google Scholar 

  24. Fukuda R, Zhang H, Whan KJ, Shimoda L, Dang CV, Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007;129(1):111–122.

    Article  CAS  PubMed  Google Scholar 

  25. Beloosesky R, Gayle DA, Amidi F, et al. N-acetyl-cysteine suppresses amniotic fluid and placenta inflammatory cytokine responses to lipopolysaccharide in rats. Am J Obstet Gynecol. 2006;194(1):268–273.

    Article  CAS  PubMed  Google Scholar 

  26. Wang B-J, Guo Y-L, Chang H-Y, et al. N-acetylcysteine inhibits chromium hypersensitivity in coadjuvant chromium-sensitized albino guinea pigs by suppressing the effects of reactive oxygen species. Exp Dermatol. 2010;19(8):e191–e200.

    Article  PubMed  Google Scholar 

  27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.

    Article  CAS  PubMed  Google Scholar 

  28. Gostimskaya I, Galkin A. Preparation of highly coupled rat heart mitochondria. J Vis Exp. 2010;(43):3–5.

  29. Kadenbach B, Huttemann M, Arnold S, Lee I, Bender E. Mitochondrial energy metabolism is regulated via nuclearcoded subunits of cytochrome c oxidase1. Free Radic Biol Med. 2000;29(3–4):211–221.

    Article  CAS  PubMed  Google Scholar 

  30. Oh C, Dong Y, Liu H, Thompson LP. Intrauterine hypoxia upregulates proinflammatory cytokines and matrix metalloproteinases in fetal guinea pig hearts. Am J Obstet Gynecol. 2008; 199(1):78.e1–e6.

    Article  CAS  Google Scholar 

  31. Pacelli C, Latorre D, Cocco T, et al. Tight control of mitochondrial membrane potential by cytochrome c oxidase. Mitochondrion. 2011;11(2):334–341.

    Article  CAS  PubMed  Google Scholar 

  32. Villani G, Attardi G. In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells. Proc Natl Acad Sci U S A. 1997;94(4):1166–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hüttemann M, Helling S, Sanderson TH, et al. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta. 2012;1817(4): 598–609.

    Article  PubMed  CAS  Google Scholar 

  34. Hájek P, Villani G, Attardi G. Rate-limiting step preceding cytochrome c release in cells primed for Fas-mediated apoptosis revealed by analysis of cellular mosaicism of respiratory changes. J Biol Chem. 2001;276(1):606–615.

    Article  PubMed  Google Scholar 

  35. Kunz WS, Kudin A, Vielhaber S, Elger CE, Attardi G, Villani G. Flux control of cytochrome c oxidase in human skeletal muscle. J Biol Chem. 2000;275(36):27741–27745.

    CAS  PubMed  Google Scholar 

  36. Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275(33): 25130–25138.

    Article  CAS  PubMed  Google Scholar 

  37. Waypa GB, Schumacker PT. Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing. J Appl Physiol. 2005; 98(1):404–414.

    Article  CAS  PubMed  Google Scholar 

  38. Hassanein T, Frederick T. Mitochondrial dysfunction in liver disease and organ transplantation. Mitochondrion. 2004;4(5–6): 609–620.

    Article  CAS  PubMed  Google Scholar 

  39. Schönfeld P, Schlüter T, Fischer K-D, Reiser G. Non-esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia. J Neurochem. 2011;118(1):69–78.

    Article  PubMed  CAS  Google Scholar 

  40. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(pt 2):335–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fontanesi F, Soto IC, Barrientos A. Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life. 2008;60(9):557–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fornuskova D, Stiburek L, Wenchich L, Vinsova K, Hansikova H, Zeman J. Novel insights into the assembly and function of human nuclear-encoded cytochrome c oxidase subunits 4, 5a, 6a, 7a and 7b. Biochem J. 2010;428(3):363–374.

    Article  CAS  PubMed  Google Scholar 

  43. Stiburek L, Vesela K, Hansikova H, et al. Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1. Biochem J. 2005;392(pt 3):625–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hervouet E, Pecina P, Demont J, et al. Inhibition of cytochrome c oxidase subunit 4 precursor processing by the hypoxia mimic cobalt chloride. Biochem Biophys Res Commun. 2006;344(4):1086–1093.

    Article  CAS  PubMed  Google Scholar 

  45. Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J. 2007; 405(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  46. Pinti M, Gibellini L, De Biasi S, et al. Functional characterization of the promoter of the human Lon protease gene. Mitochondrion. 2011;11(1):200–206.

    Article  CAS  PubMed  Google Scholar 

  47. Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal. 2002;14(11):879–897.

    Article  CAS  PubMed  Google Scholar 

  48. Tatsuta T, Langer T. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 2008;27(2): 306–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loren P. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Hasan, Y.M., Evans, L.C., Pinkas, G.A. et al. Chronic Hypoxia Impairs Cytochrome Oxidase Activity Via Oxidative Stress in Selected Fetal Guinea Pig Organs. Reprod. Sci. 20, 299–307 (2013). https://doi.org/10.1177/1933719112453509

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112453509

Keywords

Navigation