Skip to main content
Log in

LIM Kinase 1 Mediates Estradiol Effects on the Phosphorylation of Cofilinl in Eutopic Endometrial Stromal Cells During the Invasion and Proliferation of Endometriosis

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Endometriosis is an estrogen-dependent gynecological disease; however, the mechanism by which estradiol promotes the development of endometriosis, including invasion and proliferation, remains unclear. Estradiol is involved in cell invasion and proliferation by regulating the cytoskeleton. The abnormally high expression of cytoskeletal regulators (LIM kinase 1 [LIMK1] and cofilin1) is closely related to increased invasiveness and proliferation of eutopic endometrial stromal cells from endometriosis patients compared to normal eutopic endometrial cells. The aim of this study was to analyze the role of estradiol during invasion and proliferation through the LIMK1/cofilin1 pathway in the endometrium of women with endometriosis. To address this, primary eutopic endometrial stromal cells were isolated from the uteri of patients with endometriosis and cultured without estradiol. The phosphorylation of cofilin1 was analyzed by western blotting. Cell invasiveness and proliferation were evaluated following LIMK1 knockdown by RNA interference technology. We found that, before LIMK1 silencing, the phosphorylation levels of cofilin1 and LIMK1 of eutopic endometrial stromal cells from endometriosis patients treated with estradiol were higher than cells not treated with estradiol (P <.05 and P <.01, respectively). The total levels of cofilin1 and LIMK1 protein did not change (P >.05 and P >.05, respectively). After LIMK1 silencing, the phosphorylation of cofilin1 by estradiol was significantly reduced, and invasiveness and proliferation were clearly and concurrently decreased (P <.05 and P <.05, respectively). Thus, the phosphorylation of cofilin1 by estradiol is mediated by LIMK1, and estradiol is involved in regulating cell invasion and proliferation in endometriotic patients through the LIMK1/cofilin1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seracchioli R, Mabrouk M, Manuzzi L, et al. Post-operative use of oral contraceptive pills for prevention of anatomical relapse or symptom-recurrence after conservative surgery for endometriosis. Hum Reprod. 2009;24(11):2729–2735.

    Article  CAS  Google Scholar 

  2. Kitawaki J, Kado N, Ishihara H, Koshiba H, Kitaoka Y, Honjo H. Endometriosis: the pathophysiology as an estrogen-dependent disease. J Steroid Biochem Mol Biol. 2002;83(1–5):149–155.

    Article  CAS  Google Scholar 

  3. Tosti C, Biscione A, Morgante G, Bifulco G, Luisi S, Petraglia F. Hormonal therapy for endometriosis: from molecular research to bedside. Eur J Obstet Gynecol Reprod Biol. 2017;209:61–66.

    Article  CAS  Google Scholar 

  4. Zeitoun K, Takayama K, Sasano H, et al. Deficient 17beta-hydroxysteroid dehydrogenase type 2 expression in endometrio-sis: failure to me 17tabolize 17beta-estradiol. J Clin Endocrinol Metab. 1998;83(12):4474–4480.

    CAS  PubMed  Google Scholar 

  5. Rice VM. Conventional medical therapies for endometriosis. Ann N Y Acad Sci. 2002;955:343–352; discussion 389–393, 396–406.

    Article  Google Scholar 

  6. Dillon C, Goda Y. The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci. 2005;28:25–55.

    Article  CAS  Google Scholar 

  7. Simoncini T, Mannella P, Genazzani AR. Rapid estrogen actions in the cardiovascular system. Ann N Y Acad Sci. 2006;1089: 424–430.

    Article  CAS  Google Scholar 

  8. Giretti MS, Fu XD, De Rosa G, et al. Extra-nuclear signalling of estrogen receptor to breast cancer cytoskeletal remodelling, migration and invasion. PLoS One. 2008;3(5):e2238.

    Article  Google Scholar 

  9. Tosti C, Pinzauti S, Santulli P, Chapron C, Petraglia F. Pathogenetic mechanisms of deep infiltrating endometriosis. Reprod Sci. 2015;22(9):1053–1059.

    Article  CAS  Google Scholar 

  10. Simoncini T, Scorticati C, Mannella P, et al. Estrogen receptor {alpha} interacts with G{alpha}13 to drive actin remodeling andendothelial cell migration via the Rho A/Rho kinase/moesin pathway. Mol Endocrinol. 2006;20(8):1756–1771.

    Article  CAS  Google Scholar 

  11. Manetti F. LIM kinases are attractive targets with many macro-molecular partners and only a few small molecule regulators. Med Res Rev. 2012;32(5):968–998.

    Article  CAS  Google Scholar 

  12. Bamburg JR, Bernstein BW. Roles of ADF/cofilin in actin polymerization and beyond. F1000 Biol Rep. 2010;2:62.

    Article  Google Scholar 

  13. Maciver SK, Hussey PJ. The ADF/cofilin family: actin-remodeling proteins. Genome Biol. 2002;3:reviews3007.

    Article  Google Scholar 

  14. Spencer JL, Waters EM, Romeo RD, Wood GE, Milner TA, McEwen BS. Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol. 2008;29(2): 219–237.

    Article  CAS  Google Scholar 

  15. Ahmed T, Shea K, Masters JR, Jones GE, Wells CM. A PAK4- LIMK1 pathway drives prostate cancer cell migration downstream of HGF. Cell Signal. 2008;20(7):1320–1328.

    Article  CAS  Google Scholar 

  16. Yuen GS, McEwen BS, Akama KT. LIM kinase mediates estrogen action on the actin depolymerization factor Cofilin. Brain Res. 2011;1379:44–52.

    Article  CAS  Google Scholar 

  17. Wang W, Goswami S, Lapidus K, etal. Identificationand testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res. 2004;64(23): 8585–8594.

    Article  CAS  Google Scholar 

  18. Zhang Z, Chen P, Guo C, Meng X, Wang D. Effect of LIM kinase 1 overexpression on behaviour of endometriosis-derived stromal cells. Cell Tissue Res. 2015;359(3):885–893.

    Article  CAS  Google Scholar 

  19. Xu YL, Wang DB, Liu QF, Chen YH, Yang Z. Silencing of cofilin-1 gene attenuates biological behaviours of stromal cells derived from eutopic endometria of women with endometriosis. Hum Reprod. 2010;25(10):2480–2488.

    Article  CAS  Google Scholar 

  20. Acconcia F, Kumar R. Signaling regulation of genomic and non-genomic functions of estrogen receptors. Cancer Lett. 2006;238(1):1–14.

    Article  CAS  Google Scholar 

  21. Bulun SE, Gurates B, Fang Z, et al. Mechanisms of excessive estrogen formation in endometriosis. J Reprod Immunol. 2002; 55(1–2):21–33.

    Article  CAS  Google Scholar 

  22. Liu H, Lang JH. Is abnormal eutopic endometrium the cause of endometriosis?. The role of eutopic endometrium in pathogenesis of endometriosis. Med Sci Monit. 2011;17(4):RA92–RA99.

    Article  Google Scholar 

  23. Cheskis BJ, Greger JG, Nagpal S, Freedman LP. Signaling by estrogens. J Cell Physiol. 2007;213(3):610–617.

    Article  CAS  Google Scholar 

  24. Matus A. Actin-based plasticity in dendritic spines. Science. 2000;290(5492):754–758.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danbo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, Z., Liu, J. et al. LIM Kinase 1 Mediates Estradiol Effects on the Phosphorylation of Cofilinl in Eutopic Endometrial Stromal Cells During the Invasion and Proliferation of Endometriosis. Reprod. Sci. 26, 1499–1505 (2019). https://doi.org/10.1177/1933719119828076

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719119828076

Keywords

Navigation