Skip to main content
Log in

Inducible Nitric Oxide Synthase and Heme Oxygenase 1 Are Expressed in Human Cumulus Cells and May Be Used as Biomarkers of Oocyte Competence

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The interplay between oocyte and surrounding cumulus cells (CCs) during follicular growth influences oocyte competence to undergo fertilization and sustain embryo development. The expression of many genes and proteins in CCs has been suggested as potential biomarker of oocyte competence in human in vitro fertilization (IVF). In the present study, we analyzed 90 human cumulus–oocyte complexes obtained during IVF procedure: 30 CCs were analyzed using quantitative real-time polymerase chain reaction and 60 CCs using Western blotting analysis to detect gene and protein expression of some enzymes related to oxidative stress, that is, the 3 nitric oxide synthase (NOS) isoforms and heme oxygenase 1 (HO-1). In the group of 60 CCs, we also investigated the expression and phosphorylation of IkBα, a known inhibitor of the nuclear factor κB (NF-κB) pathway, which controls several redox-sensitive genes. The expression of the messenger RNAs (mRNAs) was related to the oocyte morphological analysis performed by polarized light microscopy and to the occurrence of normal fertilization after intracytoplasmic sperm injection. We observed that the amount of iNOS and HO-1 mRNAs and proteins is significantly higher, and that in the meanwhile the NF-κB pathway is activated, in CCs corresponding to oocytes that were not fertilized in comparison to CCs whose corresponding oocyte showed normal fertilization. Instead, no correlation between the fertilization and the oocytes’ morphological data was observed. These results suggest that the increase in iNOS and HO-1 mRNAs expression in CCs is a negative index of oocyte fertilizability and might be an useful tool for oocyte selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fragouli E, Wells D. Transcriptomic analysis of follicular cells provides information on the chromosomal status and competence of unfertilized oocytes. Expert Rev Mol Diagn. 2012;12(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  2. Rienzi L, Vajta G, Ubaldi F. Predictive value of oocyte morphology in human IVF: a systematic review of the literature. Hum Reprod Update. 2011;17(1):34–45.

    Article  PubMed  Google Scholar 

  3. Assou S, Haouzi D, De Vos J, Hamamah S. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol Hum Reprod. 2010;16(8):531–538.

    Article  CAS  PubMed  Google Scholar 

  4. O’Shea LC, Mehta J, Lonergan P, Hensey C, Fair T. Developmental competence in oocytes and cumulus cells: candidate genes and networks. Syst Biol Reprod Med. 2012;58(2):88–101.

    Article  PubMed  Google Scholar 

  5. Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil Steril. 2013;99(4):979–997.

    Article  CAS  PubMed  Google Scholar 

  6. Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006; 18(3): 325–332.

    Article  PubMed  Google Scholar 

  7. Mendoza C, Ruiz-Requena E, Ortega E, et al. Follicular fluid markers of oocyte developmental potential. Hum Reprod. 2002;17(4): 1017–22.

    Article  CAS  PubMed  Google Scholar 

  8. Skinner MK. Regulation of primordial follicle assembly and development. Hum Reprod Update. 2005;11(5):461–471.

    Article  PubMed  Google Scholar 

  9. Fatehi AN, Roelen BA, Colenbrander B, et al. Presence of cumulus cells during in vitro fertilization protects the bovine oocyte against oxidative stress and improves first cleavage but does not affect further development. Zygote. 2005;13(2):177–185.

    Article  CAS  PubMed  Google Scholar 

  10. Tatemoto H, Sakurai N, Muto N. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol Reprod. 2000;63(3): 805–810.

    Article  CAS  PubMed  Google Scholar 

  11. Matos L, Stevenson D, Gomes F, Silva-Carvalho JL, Almeida H. Superoxide dismutase expression in human cumulus oophorus cells. Mol Hum Reprod. 2009;15(7):411–419.

    Article  CAS  PubMed  Google Scholar 

  12. Wink DA, Mitchell JB. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998;25(4–5):434–456.

    Article  CAS  PubMed  Google Scholar 

  13. Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999;1411(2–3):217–230.

    Article  CAS  PubMed  Google Scholar 

  14. Nathan C, Xie QW. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994;269(19): 13725–13728.

    CAS  PubMed  Google Scholar 

  15. May MJ, Ghosh S. Signal transduction through NF-kB. Immunol Today. 1998;19(2):80–88.

    Article  CAS  PubMed  Google Scholar 

  16. Das DK, Maulik N. Conversion of death signal into survival signal by redox signaling. Biochemistry. 2004;69(1):10–17.

    CAS  PubMed  Google Scholar 

  17. Thaler CD, Epel D. Nitric oxide in oocyte maturation, ovulation, fertilization, cleavage and implantation: a little dab’ll do ya. Cur Pharm Des. 2003;9(5):399–409.

    Article  CAS  Google Scholar 

  18. Farombi EO, Surh YJ. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection. J Biochem Mol Biol. 2006;39(5): 479–491.

    CAS  PubMed  Google Scholar 

  19. Barros A, Sousa M, Silva J, Almeida V, Rocha E. Aging, hyaluronidase removal of the cumulus, and microinjection do not affect the sperm binding potential of human oocytes. J Assist Reprod Genet. 1997;14(2):97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Keefe D, Tran P, Pellegrini C, Oldenbourg R. Polarized light microscopy and digital image processing identify a multilaminar structure of the hamster zona pellucida. Hum Reprod. 1997; 12(6): 1250–1252.

    Article  CAS  PubMed  Google Scholar 

  21. Molinari E, Evangelista F, Racca C, Cagnazzo C, Revelli A. Polarized light microscopy-detectable structures of human oocytes and embryos are related to the likelihood of conception in IVF. J Assist Reprod Genet. 2012;29(10):1117–1122.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oldenbourg R. Polarized light microscopy of spindles. Methods Cell Biol. 1999;61:175–208.

    Article  CAS  PubMed  Google Scholar 

  23. World Health Organization. Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge: Cambridge University Press; 1999.

  24. Mortimer D, Mortimer ST. Density gradient separation of sperm for artificial insemination. Methods Mol Biol. 2013;927:217–226.

    Article  CAS  PubMed  Google Scholar 

  25. Eisenberg E, Levanon EY. Human housekeeping genes are compact. Trends Genet. 2003;19(7):362–365.

    Article  CAS  PubMed  Google Scholar 

  26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the the 2-ΔΔCT method. Methods. 2001;25(4):402–408.

    CAS  PubMed  Google Scholar 

  27. Tiitinen A. Prevention of multiple pregnancies in infertility treatment. Best Pract Res Clin Obstet Gynaecol. 2012;26(6):829–840.

    Article  PubMed  Google Scholar 

  28. Ou XH, Li S, Wang ZB, et al. Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes. Hum Reprod. 2012;27(7):2130–2145.

    Article  CAS  PubMed  Google Scholar 

  29. Jiao GZ, Cao XY, Cui W, et al. Developmental potential of prepubertal mouse oocytes is compromised due mainly to their impaired synthesis of glutathione. PLoS ONE. 2013;8(3);e58018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dubey PK, Thipathi V, Singh RP, et al. Expression of nitric oxide synthase isoforms in different stages of buffalo (Bubalus bubalis) ovarian follicles: effect of nitric oxide on in vitro development of preantral follicle. Theriogenology. 2012;77(2):280–291.

    Article  CAS  PubMed  Google Scholar 

  31. Grasselli F, Ponderato N, Basini G, Tamanini C. Nitric oxide synthase expression and nitric oxide/cyclic GMP pathway in swine granulosa cells. Domest Anim Endocrinol. 2001;20(4): 241–252.

    Article  CAS  PubMed  Google Scholar 

  32. Sela-Abramovich S, Galiani D, Nevo N, Dekel N. Inhibition of rat oocyte maturation and ovulation by nitric oxide: mechanism of action. Biol Reprod. 2008;78(6):1111–1118.

    Article  CAS  PubMed  Google Scholar 

  33. Kolyada AY, Savikovsky N, Madias NE. Transcriptional regulation of the human iNOS gene in vascular-smooth-muscle cells and macrophages: evidence for tissue specificity. Biochem Biophys Res Commun. 1996;220(3):600–605.

    Article  CAS  PubMed  Google Scholar 

  34. Lavrovsky Y, Schwartzman ML, Levere RD, Kappas A, Abraham NG. Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc Natl Acad Sci USA. 1994;91(13):5987–5991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana Bergandi PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergandi, L., Basso, G., Evangelista, F. et al. Inducible Nitric Oxide Synthase and Heme Oxygenase 1 Are Expressed in Human Cumulus Cells and May Be Used as Biomarkers of Oocyte Competence. Reprod. Sci. 21, 1370–1377 (2014). https://doi.org/10.1177/1933719114525268

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114525268

Keywords

Navigation