Skip to main content

Advertisement

Log in

Thrombospondin-1 and Thrombospondin-2 mRNA and TSP-1 and TSP-2 Protein Expression in Uterine Fibroids and Correlation to the Genes COL1A1 and COL3A1 and to the Collagen Cross-link Hydroxyproline

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine fibroids are composed of altered collagen fibrils and represent an arrested response to injury-initiating fibrosis. In many tissues, TSP-1 is secreted by adult macrophages and monocytes upon wounding and is involved in the activation of transforming growth factor β. In the absence of TSP-1, the orchestrated process of wound healing is impaired. The authors obtained tissue from the edge and center of fibroids at the time of hysterectomy and compared them with adjacent myometrium. The pattern of TSP-1 and TSP-2 expression was correlated to that of COL1A1 and COL3A1. Collagen and hydroxyproline were increased in fibroids. Thrombospondin-1 was consistently underexpressed in both the edge and center of the fibroids, while COL1A1 and COL3A1 were consistently overexpressed. However, TSP-2 was inconsistently expressed. These findings lead to the conclusion that the underexpression of TSP-1 may contribute to the overall development of uterine fibroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baird D, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003; 188:100–107.

    Article  PubMed  Google Scholar 

  2. Tsibris JC, Segars J, Coppola D, et al. Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertil Steril. 2002; 78:114–121.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lumsden MA, Wallace EM. Clinical presentation of uterine fibroids. BaillieresClin Obstet Gynaecol. 1998;12:177–195.

    CAS  Google Scholar 

  4. Fujita M. Histological and biochemical studies of collagen in human uterine leiomyomas [Hokkaido igaku zasshi]. Hokkaido J Med Sci. 1985;60:602–615.

    CAS  PubMed  Google Scholar 

  5. Nowak RA. Identification of new therapies for leiomyomas: what in vitro studies can tell us. Clin Obstet Gynecol. 2001;44: 327–334.

    Article  CAS  PubMed  Google Scholar 

  6. Leppert PC, Baginski T, Prupas C, Catherino WH, Pletcher S, Segars JH. Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. Fertil Steril. 2004; 82(suppl 3):1182–1187.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davis BJ The NIEHS uterine fibroid study: preliminary results. Paper presented at: Advances in Leiomyoma Research: Second NIH International Congress; 2005; Bethesda, MD.

  8. Leppert PC, Catherino WH, Segars JH. A new hypothesis about the origin of uterine fibroids based on gene expression profiling with microarrays. Am J Obstet Gynecol. 2006;195: 415–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Catherino WH, Leppert PC, Stenmark MH, et al. Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. Genes Chromosomes Cancer. 2004;40: 204–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee BS, Margolin SB, Nowak RA. Pirfenidone: a novel pharmacological agent that inhibits leiomyoma cell proliferation and collagen production.J Clin Endocrinol Metab. 1998;83: 219–223.

    Article  CAS  PubMed  Google Scholar 

  11. Matsuo H, Maruo T, Samoto T. Increased expression of bcl-2 protein in human uterine leiomyoma and its up-regulation by progesterone. J Clin Endocrinol Metab. 1997;82:293–299.

    CAS  PubMed  Google Scholar 

  12. Chen W, Ohara N, Wang J, et al. A novel selective progesterone receptor modulator asoprisnil (j867) inhibits proliferation and induces apoptosis in cultured human uterine leiomyoma cells in the absence of comparable effects on myometrial cells. J Clin Endocrinol Metab. 2006;91:1296–1304.

    Article  CAS  PubMed  Google Scholar 

  13. Sasaki H, Ohara N, Xu Q, et al.A novel selective progesterone receptor modulator asoprisnil activates tumor necrosis factor-related apoptosis-inducing ligand (trail)-mediated signaling pathway in cultured human uterine leiomyoma cells in the absence of comparable effects on myometrial cells. J Clin Endocrinol Metab. 2007;92:616–623.

    Article  CAS  PubMed  Google Scholar 

  14. Porter KB, Tsibris JC, Nicosia SV, et al. Estrogen-induced guinea pig model for uterine leiomyoma: do ovaries protect?Biol Reprod. 1995;52:824–832.

    Article  CAS  PubMed  Google Scholar 

  15. Walker CL, Hunter D, Everitt JJ. Uterine leiomyoma in the Eker rat: a unique model for important diseases of women. Genes Chromosomes Cancer. 2003;38:349–356.

    Article  CAS  PubMed  Google Scholar 

  16. Payson M, Leppert P, Segars J. Epidemiology of myomas. Obstet Gynecol Clin North Am. 2006;33:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Catherino WH, Segars JH, Leppert PC Correlation between procollagen type I and thrombospondin-1 in human uterine leiomyoma. Poster presented at: Advances in Uterine Leiomyoma Research: Second International Congress; 2005; Bethesda, MD.

  18. Weston G, Trajstman AC, Gargett CE, Manuelpillai U, Vollenhoven BJ, Rogers PAW. Fibroids display an anti-angiogenic gene expression profile when compared with adjacent myometrium. Mol Hum Reprod. 2003;9:541–554.

    Article  CAS  PubMed  Google Scholar 

  19. Breech LL, Rock JA, Jones HWLeiomyomata uteri and myomectomy. In: TeLinde’s Operative Gynecology. 9th ed. Philadelphia, PA: Lippincott, Williams and Wilkins; 2003:753–799.

    Google Scholar 

  20. Šošić A, Skupski DW, Streltzoff J, Yun H, Chervenak FA. Vascularity of uterine myomas: assessment by color and pulsed Doppler ultrasound. Int J Gynecol Obstet. 1996;54:245–250.

    Article  Google Scholar 

  21. Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1:1559–1582.

    Article  CAS  PubMed  Google Scholar 

  22. Yang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein—related scavenger receptor and thrombospondin 2. J Biol Chem. 2001;276:8403–8408.

    Article  CAS  PubMed  Google Scholar 

  23. Greenaway J, Lawler J, Moorehead R, Bornstein P, Lamarre J, Petrik J. Thrombospondin-1 inhibits vegf levels in the ovary directly by binding and internalization via the low density lipoprotein receptor-related protein-1 (lrp-1). J Cell Physiol. 2007;210:807–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abdelouahed M, Ludlow A, Brunner G, Lawler J. Activation of platelet-transforming growth factor beta-1 in the absence of thrombospondin-1. J Biol Chem. 2000;275:17933–17936.

    Article  CAS  PubMed  Google Scholar 

  25. Schultz-Cherry S, Lawler J, Murphy-Ullrich JE. The type 1 repeats of thrombospondin 1 activate latent transforming growth factor-beta. J Biol Chem. 1994;269:26783–26788.

    CAS  PubMed  Google Scholar 

  26. Bornstein P, Agah A, Kyriakides TR. The role of thrombospondins 1 and 2 in the regulation of cell-matrix interactions, collagen fibril formation, and the response to injury. Int J Biochem Cell Biol. 2004;36:1115–1125.

    Article  CAS  PubMed  Google Scholar 

  27. Daniel C, Wiede J, Krutzsch HC, et al. Thrombospondin-1 is a major activator of tgf-beta in fibrotic renal disease in the rat in vivo. Kidney Int. 2004;65:459–468.

    Article  CAS  PubMed  Google Scholar 

  28. Hugo C, Shankland SJ, Pichler RH, Couser WG, Johnson RJ. Thrombospondin 1 precedes and predicts the development of tubulointerstitial fibrosis in glomerular disease in the rat. Kidney Int. 1998;53:302–311.

    Article  CAS  PubMed  Google Scholar 

  29. Hugo C. The thrombospondin 1-tgf-beta axis in fibrotic renal disease. Nephrol Dial Transplant. 2003;18:1241–1245.

    Article  CAS  PubMed  Google Scholar 

  30. Hiscott P, Paraoan L, Choudhary A, Ordonez JL, Al-Khaier A, Armstrong DJ. Thrombospondin 1, thrombospondin 2 and the eye. Prog Retin Eye Res. 2006;25:1–18.

    Article  CAS  PubMed  Google Scholar 

  31. Bornstein P. Thrombospondins as matricellular modulators of cell function. J Clin Invest. 2001;107:929–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Adams JC, Lawler J. The thrombospondins. Int J Biochem Cell Biol. 2004;36:961–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iruela-Arispe ML, Lombardo M, Krutzch HC, Lawler J, Roberts DD. Inhibition of angiogenesis by thrombospondin-1 is medicated by 2 independent regions within the type 1 repeats. Circulation. 1999;100:1423–1431.

    Article  CAS  PubMed  Google Scholar 

  34. Gao AG, Lindberg FP, Dimitry JM, Brown EJ, Frazier WA. Thrombospondin modulates alpha v beta 3 function through integrin-associated protein. J Cell Biol. 1996;135:533–544.

    Article  CAS  PubMed  Google Scholar 

  35. Iruela-Arispe ML, Porter P, Bornstein P, Sage EH. Thrombospondin-1, an inhibitor of angiogenesis, is regulated by progesterone in the human endometrium. J Clin Invest. 1996;97:403–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Navarro FJ, Mirkin S, Archer DF. Effect of raloxifene, 17beta-estradiol, and progesterone on mRNA for vascular endothelial growth factor isoforms 121 and 165 and thrombospondin-1 in Ishikawa cells. Fertil Steril. 2003;79:1409–1415.

    Article  PubMed  Google Scholar 

  37. Mirkin S, Archer DF. Effects of mifepristone on vascular endothelial growth factor and thrombospondin-1 mRNA in Ishikawa cells: implication for the endometrial effects of mifepristone. Contraception. 2004;70:327–333.

    Article  CAS  PubMed  Google Scholar 

  38. Agah A, Kyriakides TR, Lawler J, Bornstein P. The lack of thrombospondin-1 (tsp1) dictates the course of wound healing in double-tsp1/tsp2-null mice. Am J Pathol. 2002; 161:831–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kyriakides TR, Zhu YH, Yang Z, Huynh G, Bornstein P. Altered extracellular matrix remodeling and angiogenesis in sponge granulomas of thrombospondin 2-null mice. Am J Pathol. 2001;159:1255–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kokenyesi R, Armstrong LC, Agah A, Artal R, Bornstein P. Thrombospondin 2 deficiency in pregnant mice results in premature softening of the uterine cervix. Biol Reprod. 2004; 70:385–390.

    Article  CAS  PubMed  Google Scholar 

  41. Cramer SF, Patel A. The nonrandom regional distribution of uterine leiomyomas: a clue to histogenesis?Human Pathol. 1992;23:635–638.

    Article  CAS  Google Scholar 

  42. Cramer SF, Horiszny JA, Leppert P. Epidemiology of uterine leiomyomas with an etiologic hypothesis. J Reprod Med. 1995;40:595–600.

    CAS  PubMed  Google Scholar 

  43. Cramer SF, Padela AI, Marchetti CE, Newcomb PM, Heller DS. Myometrial hyperplasia in pediatric, adolescent, and young adult uteri. J Pediatr Adolesc Gynecol. 2003;16:301–306.

    Article  PubMed  Google Scholar 

  44. Pritts EA. Fibroids and infertility: a systematic review of the evidence. Obstet Gynecol Survey. 2001;56:483–491.

    Article  CAS  Google Scholar 

  45. Kolankaya A., Arici A. Myomas and assisted reproductive technologies: when and how to act?Obstet Gynecol Clin North Am. 2006;33:145–152.

    Article  PubMed  Google Scholar 

  46. Desmoulière A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblasts. Wound Repair Regen. 2005; 13(1):7–12.

    Article  PubMed  Google Scholar 

  47. Wojdecki J, Grynsztajn A. Scar formation in the uterus after cesarean section. Am J Obstet Gynecol. 1970; 107(2):322–324.

    Article  CAS  PubMed  Google Scholar 

  48. Cobellis L, Pecori E, Cobellis G. Comparison of intramural myomectomy scar after laparotomy or laparoscopy. Int J Gynaecol Obstet. 2004;84:87–88.

    Article  CAS  PubMed  Google Scholar 

  49. Buhimschi CS, Buhimschi IA, Patel S, Malinow AM, Weiner CP. Rupture of the uterine scar during term labour: contractility or biochemistry?BJOG. 2005;112:38–42.

    Article  PubMed  Google Scholar 

  50. Zhao Y, Wen Y, Polan ML, Qiao J, Chen BH. Increased expression of latent TGF-β binding protein-1 and fibrillin-1 in human uterine leiomyomata Mol Hum Reprod. 2007;13:343–349.

    CAS  PubMed  Google Scholar 

  51. Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev. 2000;11(1–2):59–69.

    Article  CAS  PubMed  Google Scholar 

  52. Daniel C, Takabatake Y, Mizui M, et al. Antisense oligonucleotides against thrombospondin-1 inhibit activation of tgf-beta in fibrotic renal disease in the rat in vivo. Am J Pathol. 2003;163:1185–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neuschwander-Tetri BA, Talkad V, Otis Stephen F. Induced thrombospondin expression in the mouse pancreas during pancreatic injury. Int J Biochem Cell Biol. 2006;38:102–109.

    Article  CAS  PubMed  Google Scholar 

  54. Chaulet H, Lin F, Guo J, et al. Sustained augmentation of cardiac alpha1a-adrenergic drive results in pathological remodeling with contractile dysfunction, progressive fibrosis and reactivation of matricellular protein genes. J Mol Cell Cardiol. 2006;40:540–552.

    Article  CAS  PubMed  Google Scholar 

  55. Chatila K, Ren G, Xia Y, Huebener P, Bujak M, Frangogiannis NG. The role of the thrombospondins in healing myocardial infarcts. Cardiovasc Hematol Agents Med Chem. 2007;5:21–27.

    Article  CAS  PubMed  Google Scholar 

  56. Bodner-Adler B, Nather A, Bodner K, et al. Expression of thrombospondin 1 (tsp 1) in patients with uterine smooth muscle tumors: an immunohistochemical study. Gynecol Oncol. 2006;103:186–189.

    Article  CAS  PubMed  Google Scholar 

  57. Qian X, Tuszynski GP. Expression of thrombospondin-1 in cancer: a role in tumor progression. Proc Soc Exp Biol Med. 1996;212:199–207.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang YW, Su Y, Volpert OV, Vande Woude GF. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci U S A. 2003;100:12718–12723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP. Cd36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol. 1997; 138:707–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bornstein P. Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol. 1995; 130:503–506.

    Article  CAS  PubMed  Google Scholar 

  61. Atiken E, Khaund A, Hamid SA, Millan D, Campbell S. The normal human myometrium has a vascular spatial gradient absent in small fibroids. Human Reprod. 2006;21:2669–2678.

    Article  Google Scholar 

  62. Janney Smith S. Uterine fibroid embolisation. Am Fam Physician. 2000;61:3601–3611.

    Google Scholar 

  63. Yang Z, Kyriakides TA, Bornstein P. Matricellular proteins as modulators of cell-matrix interactions: adhesive defect in thrombospondin-2 null fibroblasts is a consequence of increased levels of matrix metalloproteinase-2. Mol Biol Cell. 2000;11: 3353–3364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Werb Z, Vu TH, Rinkenberger JL, Coussens LM. Matrix-degrading proteases and angiogenesis during development and tumor formation. APMIS. 1999;107:11–18.

    Article  CAS  PubMed  Google Scholar 

  65. Ravanti L, Kahari VM. Matrix metalloproteinases in wound repair (review). Int J Mol Med. 2000;6:391–407.

    CAS  PubMed  Google Scholar 

  66. Adams JC. Thrombospondins: multifunctional regulators of cell interactions. Annu Rev Cell Dev Biol. 2001;17:25–51.

    Article  CAS  PubMed  Google Scholar 

  67. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med. 2000; 6:41–48.

    Article  CAS  PubMed  Google Scholar 

  68. Mateo V, Lagneaux L, Bron D, et al. Cd47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Nat Med. 1999;5:1277–1284.

    Article  CAS  PubMed  Google Scholar 

  69. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1994;265:1582–1584.

    Article  CAS  PubMed  Google Scholar 

  70. Grossfeld GD, Ginsberg DA, Stein JP, et al.Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor angiogenesis, and tumor progression. J Natl Cancer Inst. 1997;89:219–227.

    Article  CAS  PubMed  Google Scholar 

  71. Lawler J. The functions of thrombospondin-1 and -2. Curr Opin Cell Biol. 2000;12:634–640.

    Article  CAS  PubMed  Google Scholar 

  72. Cauchard JH, Berton A, Godeau G, Hornebeck W, Bellon G. Activation of latent transforming growth factor beta 1 and inhibition of matrix metalloprotease activity by a thrombospondin-like tripeptide linked to elaidic acid. Biochem Pharmacol. 2004;67:2013–2022.

    Article  CAS  PubMed  Google Scholar 

  73. Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab. 2000;71:418–435.

    Article  CAS  PubMed  Google Scholar 

  74. Booz GW, Baker KM. Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res. 1995;30:537–543.

    Article  CAS  PubMed  Google Scholar 

  75. Creemers EE, Cleutjens JP, Smits JF, Daemen MJ. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure?Circ Res. 2001;89: 201–210.

    Article  CAS  PubMed  Google Scholar 

  76. Donnini S, Morbidelli L, Taraboletti G, Ziche M. Erk1-2 and p38 MAPK regulate MMP/TIMP balance and function in response to thrombospondin-1 fragments in the microvascular endothelium. Life Sci. 2004;74:2975–2985.

    Article  CAS  PubMed  Google Scholar 

  77. Spinale FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res. 2002;90:520–530.

    Article  CAS  PubMed  Google Scholar 

  78. Mumby SM, Raugi GJ, Bornstein P. Interactions of thrombospondin with extracellular matrix proteins: selective binding to type V collagen. J Cell Biol. 1984; 98:646–652.

    Article  CAS  PubMed  Google Scholar 

  79. Galvin NJ, Vance PM, Dixit VM, Fink B, Frazier WA. Interaction of human thrombospondin with types I-V collagen: direct binding and electron microscopy. J Cell Biol. 1987; 104:1413–1422.

    Article  CAS  PubMed  Google Scholar 

  80. Cockburn CG, Badrnes MJ. Characterization of thrombospondin binding to collagen (type I) fibres: role of collagen telopeptides. Matrix. 1999;11:168–176.

    Article  Google Scholar 

  81. Sipes JM, Guo N, Negre E, Vogel T, Krutzsch HC, Roberts DD. Inhibition of fibronectin binding and fibronectin-mediated cell adhesion to collagen by a peptide from the second type I repeat of thrombospondin. J Cell Biol. 1993;121:469–477.

    Article  CAS  PubMed  Google Scholar 

  82. Walker CL, Stewart EA. Uterine fibroids: the elephant in the room. Science. 2005;308:1589–1592.

    Article  CAS  PubMed  Google Scholar 

  83. Kyriakides TR, Leach KJ, Hoffman AS, Ratner BD, Bornstein P. Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity. Proc Natl Acad Sci U S A. 1999;96:4449–4454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kyriakides TR, Tam JW, Bornstein P. Accelerated wound healing in mice with a disruption of the thrombospondin 2 gene. J Invest Dermatol. 1999;113:782–787.

    Article  CAS  PubMed  Google Scholar 

  85. Graf R, Aspenberg M, Freyberg M, Friedl P. A common mechanism for the mechanosensitive regulation of apoptosis in different cell types and for different mechanical stimuli. Apoptosis. 2003;8:531–538.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phyllis C. Leppert MD, PhD.

Additional information

Funded by the National Institutes of Health 1 UL1-RR 024128 and the Department of Obstetrics and Gynecology Duke University Research Fund for New Faculty. Presented in part at the Eighth International Conference on the Extracellular Matrix of the Female Reproductive Tract, November 11 and 13, 2006, and at the Society for Gynecological Investigation Annual Meeting, March 14 to 17, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behera, M.A., Feng, L., Yonish, B. et al. Thrombospondin-1 and Thrombospondin-2 mRNA and TSP-1 and TSP-2 Protein Expression in Uterine Fibroids and Correlation to the Genes COL1A1 and COL3A1 and to the Collagen Cross-link Hydroxyproline. Reprod. Sci. 14 (Suppl 8), 63–76 (2007). https://doi.org/10.1177/1933719107309591

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719107309591

Keywords

Navigation