Skip to main content

Advertisement

Log in

Metastin Stimulates Aldosterone Synthesis in Human Adrenal Cells

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Kisspeptins, including metastin, are encoded by the KiSS-1 gene and play an important role in regulating the hypothalamic gonadotropin-releasing hormone (GnRH) system via G protein—coupled receptor 54 (GPR54, also called KiSS-1R). Normally, metastin (also called Kp-54) levels are quite low, except during pregnancy, when levels increase 1000-fold over those found in men and nonpregnant women. However, the potential hormonal role of metastin in the fetal and maternal circulation is unknown. In this study, the authors examine the levels of GPR54 mRNA expression in human adult and fetal adrenals using quantitative real-time reverse-transcriptase polymerase chain reaction (RT-PCR). In addition, they examine the effects of metastin on steroidogenesis and steroidogenic enzyme mRNA levels in fetal adrenal cells and in the H295R adrenocortical cell line using enzyme immunoassay and RT-PCR techniques. The authors demonstrate that GPR54 mRNA is significantly higher (50-fold) in human fetal adrenals than in adult adrenals. Immunohistochemical studies have demonstrated that the GPR54 protein is predominantly expressed in the neocortex of human fetal adrenals in the third trimester. Metastin increases aldosterone production (approximately 2-fold) in both fetal neocortex adrenal cells and H295R adrenal cells, with a maximal increase seen at 100 nM. In addition, metastin increased angiotensin II (Ang II)—stimulated aldosterone production by approximately 1.5-fold. Metastin also increased the ability of the H295R cells to metabolize exogenously added pregnenolone to aldosterone but had no effect on the expression of aldosterone synthase (CYP11B2). These results suggest that the high fetal/maternal levels of metastin seen during pregnancy may affect adrenal production of aldosterone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rainey WE, Rehman KS, Carr BR Fetal and maternal adrenals in human pregnancy. Obstet Gynecol Clin North Am. 2004;31:817–835.

    Article  PubMed  Google Scholar 

  2. Narasaka T., Suzuki T., Moriya T., Sasano H. Temporal and spatial distribution of corticosteroidogenic enzymes immunoreactivity in developing human adrenal. Mol Cell Endocrinol. 2001;174:111–120.

    Article  CAS  PubMed  Google Scholar 

  3. Mesiano S., Jaffe RB Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev. 1997;18:378–403.

    CAS  PubMed  Google Scholar 

  4. Bilban M., Ghaffari-Tabrizi N., Hintermann E., et al. Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J Cell Sci. 2004;117:1319–1328.

    Article  CAS  PubMed  Google Scholar 

  5. Ohtaki T., Shintani Y., Honda S., et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001;411:613–617.

    Article  CAS  PubMed  Google Scholar 

  6. Harms JF, Welch DR, Miele ME KiSS-1 metastasis suppression and emergent pathways. Clin Exp Metastasis. 2003;20:11–18.

    Article  CAS  PubMed  Google Scholar 

  7. Horikoshi Y., Matsumoto H., Takatsu Y., et al. Dramatic elevation of plasma metastin concentrations in human pregnancy: metastin as a novel placenta-derived hormone in humans. J Clin Endocrinol Metab. 2003;88:914–919.

    Article  CAS  PubMed  Google Scholar 

  8. Seminara SB, Messager S., Chatzidaki EE, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349: 1614–1627.

    Article  CAS  PubMed  Google Scholar 

  9. Bassett MH, Zhang Y., Clyne C., White PC, Rainey WE Differential regulation of aldosterone synthase and 11beta-hydroxylase transcription by steroidogenic factor-1. J Mol Endocrinol. 2002;28:125–135.

    Article  CAS  PubMed  Google Scholar 

  10. Rainey WE, Bird IM, Mason JI, Carr BR Angiotensin II receptors on human fetal adrenal cells. Am J Obstet Gynecol. 1992;167:1679–1685.

    Article  CAS  PubMed  Google Scholar 

  11. Bird IM, Hanley NA, Word RA, et al. Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-IIresponsive aldosterone secretion. Endocrinology. 1993;133: 1555–1561.

    Article  CAS  PubMed  Google Scholar 

  12. Stankovic AK, Dion LD, Parker CR Jr. Effects of transforming growth factor-beta on human fetal adrenal steroid production. Mol Cell Endocrinol. 1994;99:145–151.

    Article  CAS  PubMed  Google Scholar 

  13. Saner-Amigh K., Mayhew BA, Mantero F., et al. Elevated expression of luteinizing hormone receptor in aldosterone-producing adenomas. J Clin Endocrinol Metab. 2006;91: 1136–1142.

    Article  CAS  PubMed  Google Scholar 

  14. Livak KJ, Schmittgen TD Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408.

    Article  CAS  PubMed  Google Scholar 

  15. Gazdar AF, Oie HK, Shackleton CH, et al. Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res. 1990;50:5488–5496.

    CAS  PubMed  Google Scholar 

  16. Rainey WE, Bird IM, Mason JI The NCI-H295 cell line: a pluripotent model for human adrenocortical studies. Mol Cell Endocrinol. 1994;100:45–50.

    Article  CAS  PubMed  Google Scholar 

  17. Muir AI, Chamberlain L., Elshourbagy NA, et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem. 2001;276:28969–28975.

    Article  CAS  PubMed  Google Scholar 

  18. Kotani M., Detheux M., Vandenbogaerde A., et al.The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem. 2001;276:34631–34636.

    Article  CAS  PubMed  Google Scholar 

  19. Janneau JL, Maldonado-Estrada J., Tachdjian G., et al. Transcriptional expression of genes involved in cell invasion and migration by normal and tumoral trophoblast cells.J Clin Endocrinol Metab. 2002;87:5336–5339.

    Article  CAS  PubMed  Google Scholar 

  20. Terao Y., Kumano S., Takatsu Y., et al. Expression of KiSS-1, a metastasis suppressor gene, in trophoblast giant cells of the rat placenta. Biochim Biophys Acta. 2004;1678:102–110.

    Article  CAS  PubMed  Google Scholar 

  21. Bilban M., Ghaffari-Tabrizi N., Hintermann E., et al. Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J Cell Sci. 2004;117:1319–1328.

    Article  CAS  PubMed  Google Scholar 

  22. Takino T., Koshikawa N., Miyamori H., et al. Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases. Oncogene. 2003;22:4617–4626.

    Article  CAS  PubMed  Google Scholar 

  23. Hiden U., Bilban M., Knofler M., Desoye G. Kisspeptins and the placenta: regulation of trophoblast invasion. Rev Endocr Metab Disord. 2007;8:31–39.

    Article  CAS  PubMed  Google Scholar 

  24. Sirianni R., Mayhew BA, Carr BR, Parker CR Jr, Rainey WE Corticotropin-releasing hormone (CRH) and urocortin act through type 1 CRH receptors to stimulate dehydroepiandrosterone sulfate production in human fetal adrenal cells. J Clin Endocrinol Metab. 2005;90:5393–5400.

    Article  CAS  PubMed  Google Scholar 

  25. Sirianni R., Rehman KS, Carr BR, Parker CR Jr, Rainey WE Corticotropin-releasing hormone directly stimulates cortisol and the cortisol biosynthetic pathway in human fetal adrenal cells. J Clin Endocrinol Metab. 2005;90:279–285.

    Article  CAS  PubMed  Google Scholar 

  26. Smith R., Mesiano S., Chan EC, Brown S., Jaffe RB Corticotropin-releasing hormone directly and preferentially stimulates dehydroepiandrosterone sulfate secretion by human fetal adrenal cortical cells. J Clin Endocrinol Metab. 1998;83: 2916–2920.

    CAS  PubMed  Google Scholar 

  27. Cooper ES, Greer IA, Brooks AN Placental proopiomelanocortin gene expression, adrenocorticotropin tissue concentrations, and immunostaining increase throughout gestation and are unaffected by prostaglandins, antiprogestins, or labor. J Clin Endocrinol Metab. 1996;81:4462–4469.

    CAS  PubMed  Google Scholar 

  28. Kuohung W., Kaiser UB GPR54 and KiSS-1: role in the regulation of puberty and reproduction. Rev Endocr Metab Disord. 2006;7:257–263.

    Article  CAS  PubMed  Google Scholar 

  29. Mesiano S., Coulter CL, Jaffe RB Localization of cytochrome P450 cholesterol side-chain cleavage, cytochrome P450 17 alpha-hydroxylase/17, 20-lyase, and 3 beta-hydroxysteroid dehydrogenase isomerase steroidogenic enzymes in human and rhesus monkey fetal adrenal glands: reappraisal of functional zonation. J Clin Endocrinol Metab. 1993;77:1184–1189.

    CAS  PubMed  Google Scholar 

  30. Freije WA, Pezzi V., Arici A., Carr BR, Rainey WE Expression of 11 beta-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) in the human fetal adrenal. J Soc Gynecol Investig. 1997;4:305–309.

    Article  CAS  PubMed  Google Scholar 

  31. Elsheikh A., Creatsas G., Mastorakos G., Milingos S., Loutradis D., Michalas S. The renin-aldosterone system during normal and hypertensive pregnancy. Arch Gynecol Obstet. 2001;264: 182–185.

    Article  CAS  PubMed  Google Scholar 

  32. Holland OB, Mathis JM, Bird IM, Rainey WE Angiotensin increases aldosterone synthase mRNA levels in human NCI-H295 cells. Mol Cell Endocrinol. 1993;94:R9–R13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Rainey PhD.

Additional information

Support for this study was provided by grants from the National Institute of Health (HD11149 and DK43140 to WER).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, Y., Aoki, S., Xing, Y. et al. Metastin Stimulates Aldosterone Synthesis in Human Adrenal Cells. Reprod. Sci. 14, 836–845 (2007). https://doi.org/10.1177/1933719107307823

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719107307823

Key words

Navigation