Skip to main content

Advertisement

Log in

Assessing a Drug’s Proarrhythmic Liability: An Overview of Computer Simulation Modeling, Nonclinical Assays, and the Thorough QT/QTc Study

  • Clinical Trials
  • Published:
Drug information journal : DIJ / Drug Information Association Aims and scope Submit manuscript

Abstract

The assessment of proarrhythmic liability has assumed considerable importance in drug development. Such liability is couched in terms of evaluating the degree to which an investigational drug lengthens the QT interval as seen on the surface electrocardiogram (ECG), defined as the time interval from the onset of the Q wave to the offset of the T wave. Two ICH guidelines released in 2005, S7B and E14, addressed nonclinical and clinical proarrhythmic assessments, respectively, and a subsequent E14 Questions and Answers document provided additional commentary on clinical evaluation. While QT prolongation is certainly not the only potential indicator of drug-induced proarrhythmia being investigated, regulatory agencies’ adoption of these guidelines lends a current central focus to this area of cardiac safety.

This article provides an integrated overview of the molecular biological underpinnings of QT prolongation, nonclinical assays assessing proarrhythmic liability, and the ICH E14 Thorough QT/QTc (TQT) study. With regard to the TQT study, it discusses study design, experimental methodology, and statistical analysis considerations required for the optimum conduct and interpretation of the study. It also addresses how results from the TQT study influence the degree and extent of ECG monitoring required in later phases of the clinical development program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strnadova C. The assessment of QT/QTc interval prolongation in clinical trials: A regulatory perspective. Drug Inf J. 2005;39:407–433.

    Article  Google Scholar 

  2. Turner JR, Drug safety, medication safety, patient safety: an overview of recent FDA initiatives and guidances. Regulatory Rapporteur. 2009;(April): 4–8.

  3. The Committee on Safety of Drugs in the United Kingdom. Final report. 1969–1970. Cited by Mann R. Andrews E. Introduction. In Mann K. Andrews E, eds., Pharmacovigilance, 2nd ed. Chichester. UK: John Wiley & Sons; 2007.

    Google Scholar 

  4. Herxheimer A, Consumer organizations. In Inman WHW, ed., Monitoring for Drug Safety, 2nd ed. Hingham, MA: MTP Press; 1986:699–704.

    Google Scholar 

  5. Turner JR, Durham TA. Integrated Cardiac Safety: Assessment Methotlologies for Noitcardiac Drugs in Discovery. Development, and Postmarketing Surveillance. Hoboken, NJ: John Wiley & Sons: 2009.

    Google Scholar 

  6. Turner JR, Satin L, Callahan TS, Litwin JS. The science of cardiac safety. Appl Clin Trials. 2010; (November suppl): 1–5.

  7. Camm AJ, Malik M, Yap YG. Acquired Long QT Syndrome. Oxford, UK: Blackwell Futura; 2004.

    Book  Google Scholar 

  8. Hondeghem LM. TRIaD: foundation for proarrhythmia (triangulation, reverse use dependence and instability). In Chadwick DJ. Goode J. eds., The hERG Potassium Channel: Structure. Function, and Long QT Syndrome. Chichester, UK: John Wiley & Sons; 2005:235–244.

    Google Scholar 

  9. Morganroth J, Brozovich FV, McDonald JT. Jacobs RA. Variability of the QT measurement in healthy men: with implications for selection of an abnormal QT value to predict drug toxicity and proarrhythmia. Am J Cardiol. 1991;67:774–776.

    Article  CAS  PubMed  Google Scholar 

  10. Bunch TJ, Ackerman MJ. Cardiac channelopathies. In Murphy JG, Lloyd MA, eds., Mayo Clinic Cardiology: Concise Textbook, 3rd ed. Rochester. MN: Mayo Clinic Scientific Press; 2007:335–344.

    Google Scholar 

  11. Litwin JS, Kleiman RB, Gussak I. Acquired (drug-induced) long QT syndrome. In Gussak I. Antzelevitch C, eds., Electrical Diseases of the Heart: Genetics, Mechanisms, Prevention, London: Springer-Verlag; 2007:705–718.

    Google Scholar 

  12. Dessertenne F. La tachycardie ventriculaire a deux foyers opposes variables. Arch des Mal du Coeur. 1966;59:263.

    CAS  Google Scholar 

  13. Watson JD, with Berry A. DNA: The Secret of Life. New York: Alfred A. Knopf; 2003.

    Google Scholar 

  14. Talbot J, Waller P, eds. Stephens’ Detection of New Adverse Drug Reactions, 5th ed. Chichester, UK: John Wiley & Sons; 2004.

    Google Scholar 

  15. ICH. Guidance S7B: the nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals. May 2005. http://www.ich.org/LOB/media/MEDIA2192.pdf (accessed July 9, 2010).

  16. ICH. Cuidclinc E14: the clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. May 2005. http://www.ich.org/LOB/media/MEDIA1476.pdf (accessed July 9, 2010).

  17. Health Canada. Health Canada question and answer document regarding the ICH S7B and E14 guidances. November 2006. http://www.hc-sc.gc.ca/dhp-mps/alt_formats/hpfb-dgpsa/pdf/prodpharma/qt_qa_qr-eng.pdf (accessed July 9, 2010).

  18. ICH. ICH E14 Implementation Working Group “Questions & Answers.” June 2008. http://www.ich.org/LOB/media/MEDIA4719.pdf (accessed July 9, 2010).

  19. Turner JR. Japanese cardiac safety requirements: the rising of a new regulatory landscape. Int Pharm Industry. 2010(Summer):64–67.

  20. Turner JR. New Drug Development: An Introduction to Clinical Trials. 2nd ed. New York: Springer; 2010.

    Book  Google Scholar 

  21. FDA. The Sentinel Initiative: National Strategy for Monitoring Medical Product Safety. 2008. http://www.fda.gov/downloads/Safety/FDAsSentinellnitiative/UCM124701.pdf (accessed July 9, 2010).

  22. Norgrady T, Weaver DF. Medicinal Chemistry: A Molecular and Biochemical Approach, 3rd ed. Oxford: Oxford University Press; 2005.

    Google Scholar 

  23. Diller DJ, Hobbs DW. Understanding hERG inhibition with QSAR models based on a one-dimensional molecular representation. J Computer-Aided Mol Design. 2007;21:379–393.

    Article  CAS  Google Scholar 

  24. Recanatini M, Cavalli A, Masetti M. In silico modeling—pharmacophores and hERG channel models. In Chadwick DJ, Goode J, eds., The hERG Potassium Channel: Structure, Function, and Long QT Syndrome, Chichester, UK: John Wiley & Sons; 2005:171–180.

    Google Scholar 

  25. Thai KM, Ecker GF. Predictive models for HERG channel blockers: ligand-based and structurebased approaches. Curr Med Chem. 2007;14:3003–3026.

    Article  CAS  PubMed  Google Scholar 

  26. Thai KM, Ecker GF. A binary QSAR model for Classification of hERG potassium channel blockers. Bioorg Med Chem. 2008;16:4107–4119.

    Article  CAS  PubMed  Google Scholar 

  27. Wynia-Smith SL, Gillian-Daniel AL, Satyshur KA, Robertson GA. hERG gating microdomains defined by S6 mutagenesis and molecular modeling. J Gen Physiol. 2008;132:507–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kamiya K, Niwa R, Morishima M, Honjo H, Sanguinetti MC. Molecular determinants of hERG channel block by terfenadinc and cisapride. J Pharmacol Sci. 2008;108:301–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beck B, Kriegl JM, Clark T. A composite model for HERG blockade. Chem Med Chem. 2008;3:254–265.

    Article  PubMed  CAS  Google Scholar 

  30. Mitcheson JS. hERG potassium channels and the structural basis of drug-induced arrhythmias. Chem Res Toxical. 2008;21:1005–1010.

    Article  CAS  PubMed  Google Scholar 

  31. Recanatini M, Cavalli A, Masetti M. Modeling HERG and its interactions with drugs: recent advances in light of current potassium channel simulations. ChemMedChem. 2008;3:523–535.

    Article  CAS  PubMed  Google Scholar 

  32. Lagrutta AA, Trepakova ES, Salata JJ. The hERG channel and risk of drug-acquired cardiac arrhythmia: an overview. Curr Top Med Chem. 2008; 8:1102–1112.

    Article  CAS  PubMed  Google Scholar 

  33. Su BH, Shen MY, Esposito EX, Hopfinger AJ, Tseng YJ. In silico binary classification QSAR models based on 4D-fingcrprints and MOE descriptors for prediction of hERG blockage. J Chem Inf Model. 2010;50:1304–1318.

    Article  CAS  PubMed  Google Scholar 

  34. Klon AE. Machine learning algorithms for the prediction of hERG and CYP450 binding in drug development. Expert Opin Drug Metab Toxicol. 2010;6:821–833.

    Article  CAS  PubMed  Google Scholar 

  35. Doddareddy MR, Klaasse EC, Shagufta, Ijzerman AP, Bender A. Prospective validation of a comprehensive in silico hERG model and its applications to commercial compound and drug databases. ChemMedChem. 2010;5:716–729.

    Article  CAS  PubMed  Google Scholar 

  36. Raschi E, Ceccarini L, De Ponti F, Recanatini M. hERG-related drug toxicity and models for predicting hERG liability and QT prolongation. Expert Opin Drug Metab Toxicol. 2009:5:1005–1021.

    Article  CAS  PubMed  Google Scholar 

  37. Witchel HJ. Drug-induced hERG block and long QT syndrome. Cardiovasc Ther. 2010; Apr 9. [Epub ahead of print.]

  38. Dumotier BM, Deurinck M, Yang Y, Traebert M, Suter W. Relevance of in vitro SCREENIT results for drug-induced QT interval prolongation in vivo: a database review and analysis. Pharmacol Ther. 2008;119:152–159.

    Article  CAS  PubMed  Google Scholar 

  39. Yao X, Anderson DL, Ross SA, et al. Predicting QT prolongation in humans during early drug development using hERG inhibition and an anaesthetized guinea-pig model. Br J Pharmacol. 2008; 154:1446–1456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang D, Patel C, Cui C, Yan G-X. Preclinical assessment of drug-induced proarrhythmias: role of the arterially perfused rabbit left ventricular wedge preparation. Pharmacol Ther. 2008;119: 141–151.

    Article  CAS  PubMed  Google Scholar 

  41. Barros TP, Alderton WK, Reynolds HM, Roach AG, Berghmans S. Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery. Br J Pharmacol. 2008;154:1400–1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu XQ, Zweigerdt R. Soo SY, et al. Highly enriched cardiomyocytes from human embryonic stem cells. Cytotherapy. 2008;10:376–389.

    Article  PubMed  CAS  Google Scholar 

  43. Witchel HJ. Emerging trends in ion channelbased assays for predicting the cardiac safety of drugs. IDrugs. 2010;13:90–96.

    CAS  PubMed  Google Scholar 

  44. Leishman D, Waldron G. Assay technologies: techniques available for quantifying drug-channel interactions. In Triggle DJ. Gopalakrishnan M, Rampe D, Zheng W, eds., Voltage-Gated Ion Channels as Drug Targets. Manheim, Germany: Wiley-VCH; 2006:37–63.

    Chapter  Google Scholar 

  45. Brown AM, hERG block. QT liability and sudden cardiac death. In Chadwick DJ. Goode J. eds., The hERG Potassium Channel: Structure. Function, and Long QT Syndrome. Chichester, UK: John Wiley & Sons; 2005:118–131.

    Google Scholar 

  46. Redfern WS, Carlsson L, Davis AS. et al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 2003;58:32–45.

    Article  CAS  PubMed  Google Scholar 

  47. Martinez MN. Interspecies differences in physiology and pharmacology: extrapolating preclinical data to human populations. In Rogge MC, Taft DR, eds., Preclinical Drug Development. Boca Raton. FL Taylor & Francis; 2005:11–66.

    Chapter  Google Scholar 

  48. Greaves P. Histopathology of Preclinical Toxicity Studies, 3rd ed. New York: Academic Press/Elsevier; 2007.

    Google Scholar 

  49. Bass AS, Darpo B, Breidenbach A, et al. International Life Sciences Institute (Health and Environmental Sciences Institute, HESI) initiative on moving towards better predictors of drug-induced torsades de pointes. Br J Pharmacol. 2008;154:1491–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gintant GA. Preclinical torsades de pointes screens: advantages and limitations of surrogate and direct approaches in evaluating proarrhythmic risk. Pharmacol Ther. 2008;119:199–209.

    Article  CAS  PubMed  Google Scholar 

  51. Vargas HM, Bass AS, Breidenbach A, et al. Scientific review and recommendations on preclinical cardiovascular safety evaluation of biologics. J Pharmacol Toxicol Meth. 2008;58:72–76.

    Article  CAS  Google Scholar 

  52. Fossa AA. Assessing QT prolongation in conscious dogs: validation of a beat-to-beat method. Pharmacol Ther. 2008;118:231–238.

    Article  CAS  PubMed  Google Scholar 

  53. Sager PT. Key clinical considerations for demonstrating the utility of preclinical models to predict clinical drug-induced torsades de pointes. Br J Pharmacol. 2008;154:1544–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Crumb W, Benyamina A, Arbus C, et al. Cyamemazine metabolites: effects on human cardiac ion channels in vitro and on the QTc interval in guinea pigs. J Pharm Pharmacol. 2008;60:1507–1513.

    Article  CAS  PubMed  Google Scholar 

  55. Valentin JP, Pollard C, Lainée P, Hammond T. Value of non-clinical cardiac repolarization assays in supporting the discovery and development of safer medicines. Br J Pharmacol. 2010;159:25–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pollard CE, Abi Gerges N, Bridgland-Taylor MH, et al. An introduction to QT interval prolongation and non-clinical approaches to assessing and reducing risk. Br J Pharmacol. 2010;159:12–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Staudacher I, Schweizer PA, Katus HA, Thomas D. hERG protein trafficking and potential for therapy and drug side effects. Curr Opin Drug Discov Devel. 2010;13:23–30.

    CAS  PubMed  Google Scholar 

  58. Salvi V, Karnad DR, Panicker GK, Kothari S. Update on the evaluation of a new drug for effects on cardiac repolarization in humans: issues in early drug development. Br J Pharmacol. 2010;159:34–48.

    Article  PubMed  CAS  Google Scholar 

  59. Rock EP, Finkle J, Fingert HJ, et al. Assessing proarrhythmic potential of drugs when optimal studies are infeasible. Am Heart J. 2009;157:827–836.

    Article  CAS  PubMed  Google Scholar 

  60. Sarapa N, Britto MR. Challenges of characterizing proarrhythmic risk due to QTc prolongation induced by nonadjuvant anticancer agents. Experl Opin Drug Saf. 2008;7:305–318.

    Article  CAS  PubMed  Google Scholar 

  61. Garnett CE, Beasley N, Bhailaram VA, et al. Concentralion-QT relationships play a key role in the evaluation of proarrhythmic risk during regulatory review. J Clin Pharmacol. 2008;48:13–18.

    Article  CAS  PubMed  Google Scholar 

  62. Bloomfield D, Krishna R. Commentary on the clinical relevance of concentration/QTc relationships for new drug candidates. J Clin Pharmacol. 2008;48:6–8.

    Article  PubMed  Google Scholar 

  63. Rohatagi S, Carrothers TJ, Kuwabara-Wagg J, Khariton T. Is a thorough QTc study necessary? The role of modeling and simulation in evaluating the QTc prolongation potential of drugs. J Clin Pharmacol. 2009;49:1284–1296.

    Article  CAS  PubMed  Google Scholar 

  64. Tirucherai GS. Applications of modeling and simulation in cardiac safety studies. DIA Global Forum. 2010;(April):68–69.

  65. Zhang J, Machado SG. Statistical issues including design and sample size calculations in thorough QT/QTc studies. J Biopharm Stat. 2008;18:451–467.

    Article  PubMed  Google Scholar 

  66. Morganroth JM. Design and conduct of the Thorough Phase I ECG Trial for new bioactive drugs. In Morganroth JM. Gussak I, eds., Cardiac Safety of Noncardiac Drugs: Practical Guidelines for Clinical Research and Drug Development. Tolowa, NJ: Humana Press; 2005:205–222.

    Chapter  Google Scholar 

  67. Hosmane B, Locke C. A simulation study of power in thorough QT/QTc studies and a normal approximation for planning purposes. Drug Inf J. 2005;39:447–455.

    Article  Google Scholar 

  68. Beasley CM Jr, Dmitrienko A, Mitchell MI. Design and analysis considerations for thorough QT studies employing conventional (10s. 12-lead) ECG recordings. Expert Rev Oin Pharmacol. 2008;1:815–839.

    Article  PubMed  Google Scholar 

  69. Mason JW, Ramseth DJ. Chanter DO, et al. Electrocardiographic reference ranges derived from 79,743 ambulatory subjects. J Electrocardiol. 2007;40:228–234.

    Article  PubMed  Google Scholar 

  70. Kligfield P, Tyl B, Marek M, Maison-Blanche P. Magnitude, mechanism, and reproducibility of QT interval differences between superimposed global and individual lead ECG complexes. Ann Noninvasive Electrocardiol. 2007;12:145–152.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Piccini JP, Whellan DJ, Berridge BR, et al. for the CSRC/HESI Writing Group. Current challenges in the evaluation of cardiac safety during drug development: translational medicine meets the Critical Path Iniliative. Am Heart J. 2009;158:317–326.

    Article  PubMed  Google Scholar 

  72. Meng Z, Quan H, Fan L, Kringle R, Sun G. Use of the average baseline versus the time-matched baseline in parallel group thorough QT/QTc studies. J Biopharm Stat. 2010;20:665–682.

    Article  PubMed  Google Scholar 

  73. Ring A. Statistical models for heart rate correction of the QT interval. Stat Med. 2010;29:786–796.

    Google Scholar 

  74. Sethuraman V, Wu S, Wang J. Statistical consideration in testing for assay sensitivity in a “thorough” QT study. J Biopharm Stat. 2010;20:641–653.

    Article  PubMed  Google Scholar 

  75. Tian H, Qiao W, Natarajan J. A comparison of several methods for analyzing data from thorough QT studies. J Biopharm Stat. 2010;20:632–640.

    Article  PubMed  Google Scholar 

  76. Fosser C, Duczynski G, Agin M, Wicker P, Darpo B. Comparison of manual and automated measurements of the QT interval in healthy volunteers: an analysis of five thorough QT studies. Clin Pharmacol Ther. 2009;86:503–506.

    Article  CAS  PubMed  Google Scholar 

  77. Badilini F, Vaglio M, Sarapa N. Automatic extraction of ECG strips from continuous 12-lead holler recordings for QT analysis al prescheduled versus optimized lime points. Ann Noninvasive Electrocardiol. 2009;14(Suppl 1):S22–S29.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Darpo B. The thorough QT/QTc study 4 years after the implementation of the ICH E14 guidance. Br J Pharmacol. 2010;159:49–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Malik M, Garnett CE, Zhang J. Thorough QT studies: questions and quandaries. Drug Saf. 2010;33:1–14.

    Article  PubMed  Google Scholar 

  80. Yang PC, Clancy CE. Effects of sex hormones on cardiac repolarization. J Cardiovasc Pharmacol. 2010;56:123–129.

    Article  CAS  PubMed  Google Scholar 

  81. Darpo B. Lee SK, Moon TE, Sills N, Mason JW. Oritavancin, a new lipoglycopeptide antibiotic: results from a Thorough QT Study. J Clin Pharmacol. 2010;50:895–903.

    Article  CAS  PubMed  Google Scholar 

  82. Morganroth J, Shah RR, Scott JW. Evaluation and management of cardiac safety using the electrocardiogram in oncology clinical trials: focus on cardiac repolarization (QTc interval). Clin Pharmacol Ther. 2010;87:166–174.

    Article  CAS  PubMed  Google Scholar 

  83. Shah RR. Drug-induced QT interval shortening: potential harbinger of proarrhythmia and regulatory perspectives. Br J Pharmacol. 2010;159:58–69.

    Article  CAS  PubMed  Google Scholar 

  84. Johnson BM, Adams LM, Zhang K, et al. Ketoconazole and rifampin significantly affect the pharmacokinetics, but not the safety or QTc interval, of casopitant, a neurokinin-1 receptor antagonist. J Clin Pharmacol. 2010;50:951 -959.

    Article  CAS  PubMed  Google Scholar 

  85. Andersen MP, Xue JQ, Graff C, et al. New descriptors of T-wave morphology are independent of heart rate. J Electrocardiol. 2008;41:557–561.

    Article  PubMed  Google Scholar 

  86. Hondeghem LM. Use and abuse of QT and TRI-aD in cardiac safety research: importance of study design and conduct. Eur J Pharmacol. 2008;584:1–9.

    Article  CAS  PubMed  Google Scholar 

  87. Graff C, Matz J, Christensen EB, et al. Quantitative analysis of T-wave morphology increases confidence in drug-induced cardiac repolarization abnormalities: evidence from the investigational IKr inhibitor Lu 35–138. J Clin Pharmacol. 2009;49:1331–1342.

    Article  CAS  PubMed  Google Scholar 

  88. Exlramiana F, Dubois R, Vaglio M, et al. The time course of new T-wave ECG descriptors following single- and double-dose administration of sotalol in healthy subjects. Ann Noninvasive Electrocardiol. 2010;15:26–35.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fossa AA, Zhou M. Assessing QT prolongation and electrocardiography restitution using a beal-to-beat method. Cardiol J. 2010;17:230–243.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Z. Satin MD, FACC.

Additional information

At time of manuscript preparation Dr Turner was a Cardiocore Senior Scientist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satin, L.Z., Durham, T.A. & Turner, J.R. Assessing a Drug’s Proarrhythmic Liability: An Overview of Computer Simulation Modeling, Nonclinical Assays, and the Thorough QT/QTc Study. Ther Innov Regul Sci 45, 357–375 (2011). https://doi.org/10.1177/009286151104500315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/009286151104500315

Key Words

Navigation