Skip to main content

Characteristics of Molybdenum as a Plasma-Generating Electrode

Buy Article:

$107.14 + tax (Refund Policy)

Plasma technology is being studied and utilized in various medical fields, which requires increased ablation rate and decreased erosion rate of the metal electrode. The purpose of this experiment is to investigate the durability and the decomposition efficacy change in the catheter tips made of molybdenum metal. Metal particle size and amount in saline medium after plasma discharge were measured by electrophoretic light scattering photometry (ELS), and the tip metal surface after discharge was observed by field emission scanning electron microscopy (FESEM) and by the chemical reaction for component change. The mass defect in the tip and the decomposition rate of porcine disc by discharge time were measured by using the electric scale with a resolution of 50 g. The surface structure change on FESEM showed that the molybdenum tip was more intact than the stainless steel tip, and the surface components included Molybdenum 96.4 wt.%, Na 0.41 wt.%, and Cl 0.23 wt.%. The average size of the particles was 300±35 nm. At high level of electric power, the erosion rate of the molybdenum tip was about 1 ug/s. The erosion rate of the molybdenum catheter was 1 × 10–13 kg per pulse, and the durability of the catheter tip was similar to that of the tungsten tip. Furthermore, we could generate plasma over 300 at the high voltage level with the molybdenum catheter. This means that the molybdenum catheter can effectively remove more tissue.

Keywords: METAL EROSION; METAL PARTICLES; MOLYBDENUM; NUCLEUS PULPOSUS; PLASMA

Document Type: Research Article

Publication date: 01 September 2016

More about this publication?
  • Science of Advanced Materials (SAM) is an interdisciplinary peer-reviewed journal consolidating research activities in all aspects of advanced materials in the fields of science, engineering and medicine into a single and unique reference source. SAM provides the means for materials scientists, chemists, physicists, biologists, engineers, ceramicists, metallurgists, theoreticians and technocrats to publish original research articles as reviews with author's photo and short biography, full research articles and communications of important new scientific and technological findings, encompassing the fundamental and applied research in all latest aspects of advanced materials.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content