Skip to main content

Effects of Ni Deposition on the Electrochemical Properties of CNT/Ni Electrode and Its Application for Glucose Sensing

Buy Article:

$107.14 + tax (Refund Policy)

A low density CNT forest was fabricated by plasma enhanced chemical vapor deposition, and Ni nanoclusters were well distributed on the sidewall and on top of CNT forest by magnetron sputtering. The Ni deposition time plays an important role in electrochemical properties of the CNT/Ni electrodes, and the optimized deposition time is 150 to 240 s. Cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activities of the CNT/Ni electrodes. The sensitivity of the glucose sensor based on a Ni240S electrode is able to reach 1433 &A mM−1 cm−2, which is much higher than that found using a Ni0S electrode.

Document Type: Research Article

Publication date: 01 April 2015

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content