Skip to main content

Synthesis of Functional ZnO Nanowall Networks Using Simple Solution Etching

Buy Article:

$107.14 + tax (Refund Policy)

We report the synthesis of high quality single crystalline ZnO nanowall networks (NNs) using ammonia solution etching of a ZnO nanowire-nanowall heterojunction (NNH) structure. Synchrotron X-ray diffraction revealed that the full-width-at-half-maximum of the ZnO (0002) peak in the ZnO NN sample was much narrower than that of the ZnO NNH sample. Temperature-dependent photoluminescence (PL) measurements revealed more intense and narrower bound exciton peak emission in the NN sample compared to that in the NNH sample. Moreover, the clear observation of free exciton emission in the PL spectrum of the NN sample, even at temperatures as low as 30 K, suggested incorporation of a small number of impurities into the NN sample. In addition, IV characteristics confirm the higher conductivity of the ZnO NNs as compared to those of the NNH structures, indicating that the NN sample had a superior crystalline property than NNH sample.

Document Type: Research Article

Publication date: 01 July 2014

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content