Skip to main content

Estimating the Solubility of Amorphous Ibuprofen Using Nanoporous Anodic Aluminum Oxide as a Solidification Template

Buy Article:

$107.14 + tax (Refund Policy)

Amorphous phases of active pharmaceutical ingredients (APIs) generally possess greater solubility than the crystalline counterparts. This presents them as attractive candidates for enhancing the bioavailability of the sparingly soluble drugs, while the unstable nature of them makes it challenging to reliably evaluate their potential improvement in solubility and utilize them in drug formulations. We have investigated the anodic aluminum oxide (AAO) substrates with nanopores to establish a simple system to examine the solubility increase accompanied by the decrease of the API crystallinity, using ibuprofen (IBU) as a model compound. The fabricated AAO substrates had the average pore diameters: 25, 55, and 370 nm. The AAO substrates with nanopores allowed the solidification of IBU with lower crystallinity. Also, the release behavior directly from the AAO substrates made it possible to estimate the accompanying solubility increase. The amorphous IBU in the 25-nm pores possessed solubility about 6 times higher than the bulk crystalline phase. The present study demonstrated that the nanoporous AAO substrates could be utilized as a straightforward tool to investigate the solubility and stability of the amorphous phases of APIs.

Document Type: Research Article

Publication date: 01 March 2013

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content