Skip to main content

Sono-Chemical Synthesis of ZnO Nano-Particles and Their Application in Hydrogen Sulphide Gas Sensing

Buy Article:

$107.14 + tax (Refund Policy)

Herein we describe synthesis of ZnO nanoparticles by using alkaline solution of ZnX2 (X = NO3, Cl) under ultrasound energy of 20 KHz. The reaction can be completed in about 1-2 hours. As prepared powders were analyzed by XRD measurement to find that the product is hexagonal phase pure ZnO. UV-Visible measurement of aq. solution showed absorption band at ∼365 nm and photolumines-cence (PL) indicated multiple bands in visible region due to deep traps owing to high temperature sintering. The hydrophilicity can be imparted by use of a suitable polyelectrolyte. Freshly prepared samples showed good dispersion in aqueous and alcoholic medium. The thick films derived from the ZnO nano-particles showed excellent sensing for hydrogen sulphide gas.

Document Type: Research Article

Publication date: 01 March 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content