Skip to main content

Top-Down Heating for Low Substrate Temperature Synthesis of Carbon Nanotubes

Buy Article:

$107.14 + tax (Refund Policy)

A top-down heating method to allow for low-temperature large area synthesis of carbon nanotubes using plasma-enhanced chemical vapour deposition is introduced in this paper. The approach utilizes top-down electromagnetic heating rather than conventional heating from a substrate heater under the electrode. A temperature gradient is created between the Ni catalyst surface and the substrate using a metal thermal control barrier layer, on which carbon nanotubes are grown as a function of the bias voltage, hydrocarbon concentrations and growth conditions. The heat during growth is provided by the plasma or energy coupling to the catalyst via top-down heating, which based on the coupled power density and the cooling of the substrate, in addition to the thermal 'barrier layer' properties will dictate the temperature of the growth surface. This unique approach of top-down heating with suitable cooling schemes, coupled with thermal barriers allows for the low substrate temperature synthesis of carbon nanotubes, scalable to large areas.

Keywords: CARBON NANOTUBES; LOW TEMPERATURE; NANOGROWTH; THERMAL BARRIER LAYER; TOP-DOWN HEATING

Document Type: Research Article

Publication date: 01 June 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content