Skip to main content

Effect of the On/Off Cyclic Modulation Time Ratio of C2H2/H2 Flow on the Low Temperature Deposition of Carbon Nanofilaments

Buy Article:

$107.14 + tax (Refund Policy)

Low temperature (less than 600 °C) deposition of carbon nanofilaments (CNFs) could be achieved on the silicon oxide substrate by thermal chemical vapor deposition system. We used Fe(CO)5 as the catalyst precursor for CNFs formation. For the enhancement of CNFs formation density, the source gas flow was intentionally manipulated as the cyclic on/off modulation of C2H2/H2 flow during the initial deposition stage. The CNFs formation density on silicon oxide substrate could be much enhanced by the cyclic modulation process having the higher growing/etching time ratio (180/30 s). Furthermore, the lattice structures of CNFs developed into carbon nanotubes at the higher growing/etching time ratio (180/30 s) case. The solely hydrogen gas feeding (C2H2 flow off) time during the initial deposition stage seems to play an important role for the variation in the CNFs formation characteristics by the cyclic modulation process.

Keywords: CARBON NANOFILAMENTS; CYCLIC MODULATION OF C2H2/H2 FLOW; FORMATION DENSITY; LATTICE STRUCTURE; THERMAL CVD

Document Type: Research Article

Publication date: 01 November 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content