Skip to main content

Size and Distribution: A Comparison of XRD, SAXS and SANS Study of II–VI Semiconductor Nanocrystals

Buy Article:

$107.14 + tax (Refund Policy)

The uniqueness of size dependent functional properties of II–VI semiconductor nanocrystals have led to the development of various techniques for determination of shape, size and distributions, although the accurate measurements of the particle sizes has always been a fundamental task in nanoscience and even become more crucial with the discovery of quantum confinement effect. Acomparison of the well established techniques X-ray diffraction (XRD), small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS) with an emphasis on size and distribution of the prepared samples are reported in order to elaborate more precise techniques for the analysis of particles sizes. Modified Scherrer formula for spherical particles has been used to calculate the particle sizes from XRD spectra. Analysis of SAXS data has been reported using Guinier model. Small angle neutron scattering measurements has been performed for ZnO nanocrystals and the scattering data obtained is simulated for polydisperse sphere. The bare ZnO, ZnS and CdS and doped with Mn2+ systems are taken within the framework of our discussion. These materials were synthesized by chemical precipitation route and found to have size distribution from 2 to 6 nm for spherical particles. Sizes determined from various techniques are in good agreement with each other however small angle scattering technique is more reliable than XRD to determine the sizes of the nanoparticles.

Keywords: GUINIER PLOT; II-VI SEMICONDUCTOR NANOCRYSTALS; SIZE AND DISTRIBUTION; SMALL ANGLE SCATTERING; X-RAY DIFFRACTION

Document Type: Research Article

Publication date: 01 March 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content