Skip to main content

Coarse-Grained Elastic Models of Protein Structures for Understanding Their Mechanics and Dynamics

Buy Article:

$107.14 + tax (Refund Policy)

An insight into mechanics and/or dynamics of protein structure is a key to understanding the biological function of protein. For gaining insight into protein mechanics and/or protein dynamics, atomistic simulation such as molecular dynamics has been extensively employed. In spite of its accurate prediction of protein mechanics and/or protein dynamics, atomistic simulation exhibits the computational limitation for large protein complex, which performs the function through dynamics and/or mechanics in the time-scale of micro-second to second regime that is currently inaccessible with atomistic simulation. In this article, we review the current state-of-art coarse-grained modeling of large protein structures for description of the mechanics and/or dynamics of such structures. Specifically, we have considered the Gō model as well as the Elastic Network Model (ENM) for studying not only the large protein dynamics but also the protein mechanics. Further, we review the currently suggested, various types of ENMs such as REACH (Realistic Extended Algorithm via Covariance Hessian) network model, heterogeneous ENM, Minimalist Network Model, and coarse-grained ENM, and their potential in predicting the large protein dynamics and/or protein mechanics. This review suggests that current state-of-art coarse-grained network model has enabled us to gain insight into large protein dynamics or mechanics currently inaccessible with atomistic simulations.

Keywords: COARSE-GRAINED MODEL; ELASTIC NETWORK MODEL; GO MODEL; PROTEIN DYNAMICS; PROTEIN MECHANICS

Document Type: Review Article

Publication date: 01 July 2010

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content