Skip to main content

Selective Laser Ablation of Methicillin-Resistant Staphylococcus Aureus with IgG Functionalized Multi-Walled Carbon Nanotubes

Buy Article:

$107.14 + tax (Refund Policy)

Severe infections caused by Methicillin-resistant Staphylococcus aureus (MRSA) and other bacteria are responsible for millions of deaths each year. One of the main objectives of future antibiotic strategies is to develop new anti-infective agents, which would be highly effective and drug-resistant (antimicrobial resistance being currently exhibited by MRSA), using specific antibodies conjugated to thermally active nanomaterials such as NIR-responsive photothermal contrast agents. Multi-walled carbon nanotubes (MWCNTs) covalently functionalized with immunoglobulin G (IgG, an antagonist of Staphylococcal protein A–SpA, which is a MRSA membrane associated protein) were selectively delivered (at various concentrations and incubation times) into MRSA bacteria. Following treatment, cultures were irradiated using an 808 nm 2 w laser diode. The post irradiation death rate ranged from 39.6% (for 1 mg/L) to 79.2% (for 50 mg/L) at 60 seconds (p < 0.001), while at 30 minutes, the death rate increased from 45.2% (1 mg/L) to 85.72% (50 mg/L), p < 0.001. Irradiated MRSAs treated with MWCNTs alone (control) for 60 seconds and 30 minutes, at concentrations ranging from 1 mg/L to 50 mg/L, resulted in significantly lower death rates (7.1–34.1% for 60 seconds, 11.7–48.8% for 30 minutes). Using IgG molecules bound to MWCNTs, followed by laser irradiation, we obtained a very efficacious nanoshell-mediated laser therapy of individual MRSA agents providing highly localized killing effects for IgG-MWCNTs targeted bacteria.

Keywords: CARBON NANOTUBES; IGG; LASER IRRADIATION; METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS; PHOTOTHERMAL ANTIMICROBIAL NANOTHERAPY

Document Type: Research Article

Publication date: 01 April 2016

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content