Skip to main content
Log in

Effect of synthesis conditions on preparation of mesoporous titania-silica by a modified sol-gel technique using a cationic surfactant

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Titania-silica mesoporous materials have been synthesized by a modified sol-gel technique using a cationic surfactant. The synthesis process was studied using statistical design of experiments to achieve the best conditions for titania-silica preparation. The synthesized materials were characterized by XRD, FT-IR, SEM and surface area measurements. The XRD and SEM results showed an amorphous structure of titania-silica. The surface area measurements using nitrogen adsorption showed type-IV isotherms which indicate the formation of mesoporous structure. A high surface area can be obtained (685 m2/g). The crystal size of titania-silica calculated using Scherrer’s equation was found to be in the range 8–15 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature 359, 710 (1992).

    Article  CAS  Google Scholar 

  2. A. Sayari and P. Liu, Microporous Mater. 12, 149 (1997).

    Article  CAS  Google Scholar 

  3. F. Schüth, Chem. Mater. 13, 3184 (2001).

    Article  Google Scholar 

  4. X. He and D. Antonelli, Angew. Chem. Int. Edn. Engl. 41, 214 (2002).

    Article  CAS  Google Scholar 

  5. D. M. Antonelli and J. Y. Ying, Angew. Chem. Int. Edn. Engl. 34, 2014 (1995).

    Article  CAS  Google Scholar 

  6. R. L. Putnam, N. Nakagawa, K. M. McGrath, N. Yao, I. A. Aksay, S. M. Grunner and A. Navrotsky, Chem. Mater. 9, 2690 (1997).

    Article  CAS  Google Scholar 

  7. V. F. Stone and R. J. Davis, Chem. Mater. 10, 1468 (1998).

    Article  CAS  Google Scholar 

  8. D. M. Antonelli, Microporous Mesoporous Mater. 30, 315 (1999).

    Article  CAS  Google Scholar 

  9. H. Yoshitake, T. Sugihara and T. Tatsumi, Chem. Mater. 14, 1023 (2002).

    Article  CAS  Google Scholar 

  10. D. T. On, Langmuir 15, 8561 (1999).

    Article  CAS  Google Scholar 

  11. D. Khushalani, G. A. Ozin and A. Kuperman, J. Mater. Chem. 9, 1491 (1999).

    Article  CAS  Google Scholar 

  12. S. Cabrera, J. E. Haskouri, A. Beltrán-Porter, D. Beltrán-Porter, D. D. Marcos and P. Amorós, Solid State Sci. 2, 513 (2000).

    Article  CAS  Google Scholar 

  13. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka and G. D. Stucky, Nature 395, 583 (1998).

    Article  Google Scholar 

  14. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka and G. D. Stucky, Chem. Mater. 11, 2813 (1999).

    Article  CAS  Google Scholar 

  15. M. Muhammed Yusuf, H. Imai and H. Hirashima, J. Non-Cryst. Solids 285, 90 (2001).

    Article  CAS  Google Scholar 

  16. H. Hirashima, H. Imai and V. Balek, J. Non-Cryst. Solids 285, 96 (2001).

    Article  CAS  Google Scholar 

  17. M. Muhammed Yusuf, H. Imai and H. Hirashima, J. Sol-Gel Sci. Technol. 25, 65 (2002).

    Article  CAS  Google Scholar 

  18. M. Muhammed Yusuf, H. Imai and H. Hirashima, J. Sol-Gel Sci. Technol. 28, 97 (2003).

    Article  CAS  Google Scholar 

  19. M. Muhammed Yusuf, Y. Chimoto, H. Imai and H. Hirashima, J. Sol-Gel Sci. Technol. 26, 635 (2002).

    Article  Google Scholar 

  20. Y. Xu, W. Zheng and W. Liu, J. Photochem. Photobiol. A 122, 57 (1999).

    Article  CAS  Google Scholar 

  21. E. Gallagher, C. M. O’Brien, A. G. M. Scannell and E. K. Arendt, J. Food Eng. 56, 269 (2003).

    Article  Google Scholar 

  22. S. L. Shyu and L. S. Hwang, Food Res. Int. 34, 133 (2001).

    Article  Google Scholar 

  23. W. G. Cochran and G. M. Cox, in: Experimental Designs, 2nd edn, p. 335. Wiley, New York, NY (1957).

    Google Scholar 

  24. R. Myers and D. C. Montgomery, Response Surface Methodology. Wiley, New York, NY (2002).

    Google Scholar 

  25. C. Liu, Y. Liu, W. Liao, Z. Wen and S. Chen, Biotechnol. Lett. 25, 877 (2003).

    Article  CAS  Google Scholar 

  26. A. Vohra and T. Satyanarayana, Crit. Rev. Biotechnol. 23, 29 (2003).

    Article  CAS  Google Scholar 

  27. Y. R. Abdel-Fattah and Z. A. Olama, Process. Biochem. 38, 115 (2002).

    Article  CAS  Google Scholar 

  28. J. Zhang, I. Boyd, B. J. O’Sullivan, P. K. Hurley, P. V. Kelly and J. P. Senateur, J. Non-Cryst. Solids 303, 134 (2002).

    Article  CAS  Google Scholar 

  29. X. T. Yoko, K. Kamiya and K. Tanaka, J. Mater. Sci. 25, 3922 (1990).

    Article  CAS  Google Scholar 

  30. C. P. Jaroniec, M. Kruk, M. Jaroniec and A. Sayari, J. Phys. Chem. B 102, 5503 (1998).

    Article  CAS  Google Scholar 

  31. M. Kruk, M. Jaroniec and A. Sayari, Langmuir 13, 6267 (1997).

    Article  CAS  Google Scholar 

  32. K. Katsunori and S. S. Puyam, J. Phys. Chem. B 103, 3563 (1999).

    Article  Google Scholar 

  33. X. Zhang, F. Zhang and K.-Y. Chan, Appl. Catal. A: Gen. 284, 193 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, R.M., El-Midany, A.A. & Othman, I. Effect of synthesis conditions on preparation of mesoporous titania-silica by a modified sol-gel technique using a cationic surfactant. Res. Chem. Intermed. 34, 629–639 (2008). https://doi.org/10.1163/156856708784795671

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856708784795671

Keywords

Navigation