Skip to main content
Log in

Methane generated during photocatalytic redox reaction of alcohols on TiO2 suspension in aqueous solutions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Studies on the photo-catalytic redox reaction of C1–C3 alcohols such as methanol, ethanol and 2-propanol were carried out in aqueous solution containing TiO2 photocatalyst (0.1% w/v) as suspension using 350 nm light. Other hydrocarbons such as ethane and ethene in the case of ethanol, and propene in the case of 2-propanol with low yields were produced along with the major photolytic products methane and carbon dioxide. The yields of methane and CO2 were found to be dependent on the light exposure time and ambient conditions. Methane yields were higher in 2-propanol and ethanol systems than in methanol system, showing their better hole-scavenging properties. In the aerated condition, methane was produced during photolysis of all alcohols in the presence of TiO2 and the yield was comparable to those observed in the corresponding CO2-saturated systems. The overall results reveal that the surface adsorbed, as well as in-situ-generated CO2 from photo-oxidation of alcohols are equally responsible for methane formation through photo-reduction in presence of TiO2. In the O2-saturated system, the methane yield was lower as compared to that in aerated system, in contrast to the CO2 yield. In N2O-and N2-purged systems, the yield of methane was observed to be low, inferring that the methane generation has not taken place through photodecomposition/photodissociation of alcohols. Again, photolysis of alcohols without TiO2 did not generate any methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Dey, A. D. Belapurkar and K. Kishore, J. Photochem. Photobiol. A: Chem. 163, 501 (2004).

    Article  CAS  Google Scholar 

  2. G. R. Dey and K. Kishore, in S. Kaneco (Ed.), Photo/Electrochemistry & Photobiology in the Environment, Energy and Fuel, p. 357. Research Signpost, Kerala (2005).

    Google Scholar 

  3. R. Memming, Top. Curr. Chem. 143, 79 (1988).

    Article  CAS  Google Scholar 

  4. D. W. Bahnemann, in E. Pelizzetti and M. Schiavello (Eds), Photochemical Conversion and Storage of Solar Energy, p. 251. Kluwer, Dordrecht (1991).

    Google Scholar 

  5. G. Mills and M. R. Hoffmann, Environ. Sci. Technol. 27, 1681 (1993).

    Article  CAS  Google Scholar 

  6. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  7. B. C. Faust, M. R. Hoffmann and D. W. Bahnemann, J. Phys. Chem. 93, 6371 (1989).

    Article  CAS  Google Scholar 

  8. Y. Mao, C. Schoneich and K.-D. Asmus, J. Phys. Chem. 95, 10080 (1991).

    Article  CAS  Google Scholar 

  9. K. Tanaka, T. Hisanaga and A. P. Rivera, in H. Al-Ekabi and D. F. Ollis (Eds), Photocatalytic Purification and Treatment of Water and Air, p. 169. Elsevier, Amsterdam (1993).

    Google Scholar 

  10. A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1, 1 (2000).

    Article  CAS  Google Scholar 

  11. M. Anpo, Res. Chem. Intermed. 11, 67 (1989).

    CAS  Google Scholar 

  12. T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature 277, 637 (1979).

    Article  CAS  Google Scholar 

  13. S. Kaneco, H. Kurimoto, K. Ohta, T. Mizuno and A. Saji, J. Photochem. Photobiol. A: Chem. 109, 59 (1997).

    Article  CAS  Google Scholar 

  14. S. Kaneco, Y. Shimizu, K. Ohta and T. Mizuno, J. Photochem. Photobiol. A: Chem. 115, 223 (1998).

    Article  CAS  Google Scholar 

  15. H. Noda, S. Ikeda, Y. Oda, K. Imai, M. Maeda and K. Ito, Bull. Chem. Soc. Jpn. 63, 2459 (1990).

    Article  CAS  Google Scholar 

  16. R. G. Russell, N. Novac, S. Srinivasan and M. Steinberg, J. Electrochem. Soc. 124, 1329 (1977).

    Article  CAS  Google Scholar 

  17. K. Hirano, K. Inoue and T. Yatsu, J. Photochem. Photobiol. A: Chem. 64, 255 (1992).

    Article  CAS  Google Scholar 

  18. J. Chen, D. F. Ollis, W. H. Rulkens and H. Bruning, Water Res. 33, 1173 (1999).

    Article  CAS  Google Scholar 

  19. O. I. Micic, Y. Zhang, K. R. Cromack, A. D. Trifunac and M. C. Thurnauer, J. Phys. Chem. 97, 13284 (1993).

    Google Scholar 

  20. M. L. Cubeiro and J. L. G. Fierro, J. Catal. 179, 150 (1998).

    Article  CAS  Google Scholar 

  21. P. Forzatti, E. Tronconi, A. S. Elmi and G. Busca, Applied Catalysis A: General 157, 387 (1997).

    Article  CAS  Google Scholar 

  22. S. P. Bates and M. J. Gillan, J. Phys. Chem. B 102, 2017 (1998).

    Article  CAS  Google Scholar 

  23. C.-C. Chuang, C.-C. Chen, and J.-L. Lin, J. Phys. Chem. B 103, 2439 (1999).

    Article  CAS  Google Scholar 

  24. C. U. Morgan, J. Phys. Chem. 76, 494 (1972).

    Article  CAS  Google Scholar 

  25. T. Kawai and T. Sakata, Chem. Commun., 694 (1980).

  26. M. L. Sauer and D. F. Ollis, J. Catal. 158, 570 (1996).

    Article  CAS  Google Scholar 

  27. D. S. Muggli, J. T. McCue and J. L. Falconer, J. Catal. 173, 470 (1998).

    Article  CAS  Google Scholar 

  28. D. S. Muggli, S. A. Larson and J. L. Falconer, J. Phys. Chem. 100, 15886 (1996).

    Article  CAS  Google Scholar 

  29. M.-J. Kim, W. Nam and G. Y. Han, Korean J. Chem. Eng. 21, 721 (2004).

    CAS  Google Scholar 

  30. P.-O. Larsson and A. Andersson, J. Catal. 179, 72 (1998).

    Article  CAS  Google Scholar 

  31. J. C. Kennedy III and A. K. Datye, J. Catal. 179, 375 (1998).

    Article  CAS  Google Scholar 

  32. T. Reztsova, C.-H. Chang, J. Koresh and H. Idriss, J. Catal. 185, 223 (1999).

    Article  CAS  Google Scholar 

  33. A. Bernas, M. Bodard and D. Saghattchian, J. Chim. Phys. 62, 1418 (1965).

    CAS  Google Scholar 

  34. M. Harada, M. Honda, H. Yamashita and M. Anpo, Res. Chem. Intermed. 25, 757 (1999).

    CAS  Google Scholar 

  35. S. A. Larson, J. A. Widegren and J. L. Falconer, J. Catal. 157, 611 (1995).

    Article  CAS  Google Scholar 

  36. R. I. Bickley and R. K. M. Jayanty, Faraday Discuss. Chem. Soc. 58, 194 (1974).

    Article  Google Scholar 

  37. B. Ohtani, M. Kakimoto, H. Miyadzu, S.-I. Nishimoto and T. Kagiya, J. Phys. Chem. 92, 5773 (1988).

    Article  CAS  Google Scholar 

  38. I. Ait-Ichou, M. Formenti, B. Pommier and S. J. Teichner, J. Catal. 91, 293 (1985).

    Article  CAS  Google Scholar 

  39. R. I. Bickley, G. Munuera and F. S. Stone, J. Catal. 31, 398 (1973).

    Article  CAS  Google Scholar 

  40. H. Yamashita, M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh and N. Iwamoto, J. Phys. Chem. B 102, 10707 (1998).

    Article  CAS  Google Scholar 

  41. Y. Ohko, A. Fujishima and K. Hashimoto, J. Phys. Chem. B 102, 1724 (1998).

    Article  CAS  Google Scholar 

  42. D. Brinkley and T. Engel, J. Phys. Chem. B 102, 7596 (1998).

    Article  CAS  Google Scholar 

  43. J. E. Rekoske and M. A. Barteau, J. Catal. 165, 57 (1997).

    Article  CAS  Google Scholar 

  44. J. Manuel G.-A., T. Armaroli, G. Ramis, E. Finocchio and G. Busca, Appl. Catal. B: Environ. 22, 249 (1999).

    Article  Google Scholar 

  45. H. Miyata, K. Hata, T. Nakajima and Y. Kubokawa, Bull. Chem. Soc. Jpn. 53, 2401 (1980).

    Article  CAS  Google Scholar 

  46. J. Cunningham and S. Srijaranai, J. Photochem. Photobiol. A: Chem. 55, 219 (1990).

    Article  CAS  Google Scholar 

  47. B. Ohatani, M. Kakimoto, S. Nishimoto and T. Kagiyo, J. Photochem. Photobiol. A: Chem. 70, 265 (1993).

    Article  Google Scholar 

  48. J. Cunningham and B. K. Hodnett, J. Chem. Soc. Faraday Trans. 77, 2777 (1981).

    Article  CAS  Google Scholar 

  49. J. Cunningham and P. Meriaudeau, J. Chem. Soc. Faraday Trans. 72, 1499 (1976).

    Article  CAS  Google Scholar 

  50. N. R. Blake and G. L. Griffin, J. Phys. Chem. 92, 5697 (1988).

    Article  CAS  Google Scholar 

  51. P. A. Mandelbaum, A. E. Regazzoni, M. A. Blesa and S. A. Bilmes, J. Phys. Chem. B 103, 5505 (1999).

    Article  CAS  Google Scholar 

  52. O. A. Semenikhin, V. E. Kazarinov, L. Jiang, K. Hashimoto and A. Fujishima, Langmuir 15, 3731 (1999).

    Article  CAS  Google Scholar 

  53. C.-B. Wang, Y. Cai and I. E. Wachs, Langmuir 15, 1223 (1999).

    Article  CAS  Google Scholar 

  54. M. Miyake, H. Yoneyama and H. Timura, Chem. Lett., 635 (1976).

  55. M. Miyake, H. Yoneyama and H. Timura, Denki Kagaku 45, 411 (1977).

    CAS  Google Scholar 

  56. J. W. T. Spinks and R. J. Woods, in An Introduction to Radiation Chemistry, 3rd edn, p. 152. Wiley, New York, NY (1990).

    Google Scholar 

  57. A. J. Elliot, Radiat. Phys. Chem. 34, 753 (1989).

    CAS  Google Scholar 

  58. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Data 17, 513 (1988).

    CAS  Google Scholar 

  59. A. Sauer, H. Cohen and D. Meyerstein, Inorg. Chem. 28, 2511 (1989).

    Article  CAS  Google Scholar 

  60. J. K. Thomas, J. Phys. Chem. 71, 1919 (1967).

    Article  CAS  Google Scholar 

  61. E. R. Kantrowitz, M. Z. Hoffman and J. F. Endicott, J. Phys. Chem. 75, 1914 (1971).

    Article  Google Scholar 

  62. J. Cunningham, E. Finn and N. Samman, Faraday Discuss. Chem. Soc. 58, 160 (1974).

    Article  Google Scholar 

  63. A. K. Vijh and B. E. Conway, Chem. Rev. 67, 623 (1967).

    Article  CAS  Google Scholar 

  64. B. Kraeutler and A. J. Bard, J. Am. Chem. Soc. 100, 5985 (1978).

    Article  CAS  Google Scholar 

  65. B. Kraeutler and A. J. Bard, J. Am. Chem. Soc. 99, 7729 (1977).

    Article  CAS  Google Scholar 

  66. J. Rabani and M. S. Metheson, J. Am. Chem. Soc. 80, 3175 (1964).

    Article  Google Scholar 

  67. Y. Tabata, in Pulse Radiolysis, p. 399. CRC Press, Boca Raton, FL (1991).

    Google Scholar 

  68. B. H. J. Bieski, D. E. Cabelli, R. L. Arudi and A. B. Ross, J. Phys. Chem. Ref. Data 14, 1041 (1985).

    Google Scholar 

  69. C. D. Jaeger and A. J. Bard, J. Phys. Chem. 83, 3146 (1979).

    Article  CAS  Google Scholar 

  70. J. R. Harbour and M. L. Hair, J. Phys. Chem. 83, 652 (1979).

    Article  CAS  Google Scholar 

  71. K. Tennakone, A. H. Jayatissa and S. Punchihewa, J. Photochem. Photobiol. A: Chem. 49, 369 (1989).

    Article  CAS  Google Scholar 

  72. M. Anpo, H. Yamashita, Y. Ichihashi and S. Ehara, J. Electroanal. Chem. 396, 21 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Dey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, G.R., Pushpa, K.K. Methane generated during photocatalytic redox reaction of alcohols on TiO2 suspension in aqueous solutions. Res Chem Intermed 32, 725–736 (2006). https://doi.org/10.1163/156856706778606462

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856706778606462

Keywords

Navigation