Skip to main content
Log in

Hydrogen production using semiconducting oxide photocatalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. Fujishima and K. Honda, Bull. Chem. Soc. Jpn. 44, 1148 (1971).

    Google Scholar 

  2. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Google Scholar 

  3. E. Bauer and C. Neuweiler, Helv. Chim. Acta 10, 901 (1927).

    Google Scholar 

  4. V. I. Veselovskii and D. M. Shub, Zh. Fiz. Khim. 26, 509 (1952).

    Google Scholar 

  5. T. R. Rubin, J. G. Calvert, G. T. Rankin and W. M. MacNevin, J. Am. Chem. Soc. 75, 2850 (1953).

    Google Scholar 

  6. M. C. Markham and K. J. Laidler, J. Phys. Chem. 57, 363 (1953).

    Google Scholar 

  7. G. M. Schwab, Adv. Catal. 9, 229 (1953).

    Google Scholar 

  8. J. G. Cavert, J. Theurer, G. T. Rankin and W. M. MacNevin, J. Am. Chem. Soc. 76, 2575 (1954).

    Google Scholar 

  9. G. A. Korunovskii and Yu. S. Lebedev, Zh. Fiz. Khim. 35, 1078 (1961).

    Google Scholar 

  10. J. C. Kuriacose and M. C. Markham, J. Phys. Chem. 65, 2232 (1961).

    Google Scholar 

  11. S. McLintock and M. Ritchie, Trans. Faraday Soc. 61, 1007 (1965).

    Google Scholar 

  12. M. Yamamoto and G. Oster, J. Polym. Sci. 4, 1683 (1966).

    Google Scholar 

  13. R. C. Oppenheim, A. S. Buchanan and T. W. Healy, Aust. J. Chem. 20, 1743 (1967).

    Google Scholar 

  14. S. R. Morrison and T. Freund, J. Chem. Phys. 47, 1543 (1967).

    Google Scholar 

  15. H. Gerischer, Surf. Sci. 18, 97 (1969).

    Google Scholar 

  16. T. Freund and W. P. Gomes, Catal. Rev. 3, 1 (1970).

    Google Scholar 

  17. B. Kraeutler and A. J. Bard, J. Am. Chem. Soc. 100, 4317 (1978).

    Google Scholar 

  18. A. J. Bard, J. Photochem. 10, 59 (1979).

    Google Scholar 

  19. A. J. Bard, Science 207, 139 (1980).

    Google Scholar 

  20. A. J. Bard, J. Phys. Chem. 86, 172 (1982).

    Google Scholar 

  21. F. T. Wagner, S. Ferrer and G. A. Somorjai, Surf. Sci. 101, 462 (1980).

    Google Scholar 

  22. F. T. Wagner and G. A. Somorjai, Nature 285, 559 (1980).

    Google Scholar 

  23. F. T. Wagner and G. A. Somorjai, J. Am. Chem. Soc. 102, 5494 (1980).

    Google Scholar 

  24. R. G. Carr and G. A. Somorjai, Nature 290, 576 (1981).

    Google Scholar 

  25. .S. Ferrer and G. A. Somorjai, J. Phys. Chem. 85, 1464 (1981).

    Google Scholar 

  26. J. Kiwi and M. Grätzel, Nature 281, 657 (1979).

    Google Scholar 

  27. E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca and M. Grätzel, Nature 289, 158 (1981).

    Google Scholar 

  28. D. Duonghong, E. Borgarello and M. Grätzel, J. Am. Chem. Soc. 103, 4685 (1981).

    Google Scholar 

  29. E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca and M. Grätzel, J. Am. Chem. Soc. 103, 6324 (1981).

    Google Scholar 

  30. E. Borgarello, J. Kiwi, M. Grätzel, E. Pelizzetti and M. Visca, J. Am. Chem. Soc. 104, 2996 (1982).

    Google Scholar 

  31. H. Gerischer, Top. Appl. Phys. 31, 115 (1979).

    Google Scholar 

  32. H. Tributsch, Nature 281, 555 (1979).

    Google Scholar 

  33. T. Kawai and T. Sakata, Nature 282, 283 (1979).

    Google Scholar 

  34. T. Kawai and T. Sakata, J. Chem. Soc., Chem. Commun., 1047 (1979).

  35. T. Kawai and T. Sakata, Chem. Phys. Lett. 72, 87 (1979).

    Google Scholar 

  36. T. Kawai and T. Sakata, J. Chem. Soc., Chem. Commun., 694 (1980).

  37. T. Kawai and T. Sakata, Nature 286, 474 (1980).

    Google Scholar 

  38. T. Kawai and T. Sakata, Chem. Lett., 81 (1981).

  39. Y. Inoue, T. Niiyama, Y. Asai and K. Sato, J. Chem. Soc., Chem. Commun., 579 (1992).

  40. Y. Inoue, Y. Asai and K. Sato, J. Chem. Soc., Faraday Trans. 90, 797 (1994).

    Google Scholar 

  41. M. Kohno, S. Ogura and Y. Inoue, J. Mater. Chem. 6, 1921 (1996).

    Google Scholar 

  42. M. Kohno, S. Ogura, K. Sato and Y. Inoue, Stud. Surf. Sci. Catal. 101, 143 (1996).

    Google Scholar 

  43. M. Kohno, S. Ogura, K. Sato and Y. Inoue, J. Chem. Soc. Faraday Trans. 93, 2433 (1997).

    Google Scholar 

  44. M. Kohno, S. Ogura, K. Sato and Y. Inoue, Chem. Phys. Lett. 267, 72 (1997).

    Google Scholar 

  45. K. Domen, A. Kudo, A. Shinozaki, A. Tanaka, K. Maruya and T. Onishi, J. Chem. Soc., Chem. Commun., 356 (1986).

  46. K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya and T. Onishi, J. Chem. Soc., Chem. Commun., 1706 (1986).

  47. A. Kudo, A. Tanaka, K. Domen, K. Maruya, K. Aika and T. Onishi, J. Catal. 111, 67 (1988)

    Google Scholar 

  48. A. Kudo, K. Sayama, A. Tanaka, K. Asakura, K. Domen, K. Maruya and T. Onishi, J. Catal. 120, 337 (1989).

    Google Scholar 

  49. K. Sayama, A. Tanaka, K. Domen, K. Maruya and T. Onishi, Catal. Lett. 4, 217 (1990).

    Google Scholar 

  50. K. Domen, A. Kudo, A. Tanaka and T. Onishi, Catal. Today 8, 77 (1990).

    Google Scholar 

  51. K. Domen, J. Yoshimura, T. Sekine, A. Tanaka and T. Onishi, Catal. Lett. 4, 339 (1990).

    Google Scholar 

  52. K. Sayama, A. Tanaka, K. Domen, K. Maruya and T. Onishi, J. Phys. Chem. 95, 1345 (1991).

    Google Scholar 

  53. K. Domen, Y. Ebina and J. Kondo, Res. Chem. Intermed. 20, 895 (1994).

    Google Scholar 

  54. N. Kinomura, N. Kamada and F. Muto, J. Chem. Soc. Dalton 11, 2349 (1995).

    Google Scholar 

  55. S. Sato and J. M. White, J. Catal. 69, 128 (1981).

    Google Scholar 

  56. K. Yamaguti and S. Sato, J. Chem. Soc., Faraday Trans. 81, 1237 (1985).

    Google Scholar 

  57. S. Sato, Denki Kagaku Oyobi Kogyo Butsuri Kagaku 54, 977 (1986).

    Google Scholar 

  58. K. Sayama and H. Arakawa, Chem. Lett., 253 (1992).

  59. K. Sayama and H. Arakawa, J. Chem. Soc., Chem. Commun., 150 (1992).

  60. K. Sayama and H. Arakawa, J. Phys. Chem. 97, 531 (1993).

    Google Scholar 

  61. K. Sayama and H. Arakawa, J. Photochem. Photobiol. A: Chem. 77, 243 (1994).

    Google Scholar 

  62. K. Sayama and H. Arakawa, J. Photochem. Photobiol. A: Chem. 94, 67 (1996).

    Google Scholar 

  63. K. Sayama and H. Arakawa, J. Chem. Soc., Faraday Trans. 93, 1647 (1997).

    Google Scholar 

  64. S. C. Moon, S. Tabata, K. Okada, M. Fujiki and H. Mametsuka, Symp. Proc. Mater. Res. Soc. 454, 85 (1996).

    Google Scholar 

  65. S. C. Moon, H. Mametsuka, E. Suzuki and Y. Nakahara, in: Proceedings of the 3rd Japan-EU Joint Workshop on the Frontiers of Catalytic Science and Technology for Energy, Environment and Risks Prevention, Tsukuba, Japan, p. 387 (1997).

  66. S. C. Moon, H. Mametsuka, E. Suzuki and M. Anpo, Chem. Lett., 117 (1998).

  67. H. Mametsuka, S. C. Moon, K. Okada and E. Suzuki, in: Abstracts of the 12th International Conference on Photochemical Conversion and Storage of Solar Energy, Berlin, German, p. W3 (1998).

  68. S. C. Moon, H. Mametsuka, E. Suzuki and Y. Nakahara, Catal. Today 45, 79 (1998).

    Google Scholar 

  69. H. Mametsuka, S. C. Moon, K. Okada, E. Suzuki and Y. Nakahara, in: Abstracts of the 3rd Tokyo Conference on Advanced Catalytic Science and Technology, Tokyo, Japan, p. 290 (1998).

  70. C. E. Chang and W. R. Wilcox, Mater. Res. Bull. 6, 1297 (1971).

    Google Scholar 

  71. Y. Sadaoka and Y. Sakai, Denki Kagaku Oyobi Kogyo Butsuri Kagaku 50, 438 (1982).

    Google Scholar 

  72. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo and K. Domen, J. Chem. Soc., Chem. Commun., 357 (1998).

  73. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo and K. Domen, Chemtracts 11, 596 (1998).

    Google Scholar 

  74. M. Anpo, Y. Ichihashi, M. Takeuchi and H. Yamashita, Res. Chem. Intermed. 24, 143 (1998).

    Google Scholar 

  75. M. Anpo, Catal. Surv. 1, 169 (1997).

    Google Scholar 

  76. H. Yamashita, M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh and N. Iwamoto, J. Phys. Chem. B 102, 10707 (1998).

    Google Scholar 

  77. C. A. Linkous, G. T. McKaige, D. K. Slattery, A. J. A. Ouellette and B. C. N. Austin, Solar Photocatalytic Hydrogen Production from Water using a Dual Bed Photosystem. Solar Energy Center, Florida, Cocoa, FL (1995).

    Google Scholar 

  78. C. A. Linkous, N. Z. Muradov and S. N. Ramser, Int. J. Hydrogen Energ. 20, 701 (1995).

    Google Scholar 

  79. C. A. Linkous, Proc. US DOE Hydrogen Prog. Rev. 1, 389 (1996).

    Google Scholar 

  80. C. A. Linkous, D. K. Slattery, A. J. A. Ouellette, G. T. McKaige and B. C. N. Austin, in: Proceedings of the 11thWorld Hydrogen Energy Conference, Stuttgart,Germany, Vol. 3, p. 2545 (1996).

    Google Scholar 

  81. C. A. Linkous, Proc. US DOE Hydrogen Prog. Rev. 2, 129 (1997).

    Google Scholar 

  82. K. Fujihara, T. Ohno and M. Matsumura, in: Abstracts of 1st NIMC International Symposium on PhotoreactionControl and Photofunctional Materials, Tsukuba, Japan, p. 151 (1998).

  83. M. Takeuchi, M. Anpo, T. Hirao, N. Itoh and N. Iwamoto, Surf. Sci. Jpn. 22, 561 (2001).

    Google Scholar 

  84. M. Kitano, Y. Yoshida, M. Takeuchi, M. Matsuoka, M. Anpo, S. C. Moon, H. Mametsuka, E. Suzuki, T. Hirao, S. Iwamoto and T. Eura, in: Abstracts of the 88th Meeting of the Catalysis Society of Japan, Beppu, p. 173 (2001).

  85. M. Anpo and M. Takeuchi, J. Catal. (2003) (in press).

  86. M. Kitano, M. Matsuoka, T. Eura and M. Anpo, in: Abstracts 83th Annual Metting of the Chemical Society of Japan, Tokyo (2003).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, SC., Matsumura, Y., Kitano, M. et al. Hydrogen production using semiconducting oxide photocatalysts. Research on Chemical Intermediates 29, 233–256 (2003). https://doi.org/10.1163/156856703764929912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856703764929912

Navigation